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Abstract
Apathy is a frequent neuropsychiatric syndrome in
people with dementia. It leads to diminished mo-
tivation for physical, cognitive and emotional ac-
tivity. Apathy is highly underdiagnosed since its
criteria have been only recently established and
rely heavily on the subjective evaluation of human
observers. In this paper we analyse speech sam-
ples from demented people with and without apa-
thy. Speech was provoked by asking patients two
emotional questions. Acoustic features were ex-
tracted and used in a classification task. The result-
ing models show performances of AUC = 0.71
and AUC = 0.63. This is a decent first step into
the direction of automatic detection of apathy from
speech. Usefulness of stimuli to elicit free speech
is found to depend on patients gender.

1 Introduction
Apathy is a neuropsychiatric syndrome that expresses itself
in multiple domains: loss of interest, emotional blunting and
diminished goal directed behaviour [Marin, 1991]. It is asso-
ciated with a variety of neurodegenerative diseases, such as
Alzheimer’s disease (AD), Parkinson’s disease or even Mild
Cognitive Impairment (MCI) [Di Iulio et al., 2010]. Apathy is
present in nearly 65% of dementia cases [Aalten et al., 2007;
Robert et al., 2005] and has a negative predictive role for dis-
ease course [Stella et al., 2015], as well as a strong impact on
the quality of life of patients and their caregivers [Hurt et al.,
2008].

Diagnosis of apathy is usually conducted through clinical
interviews and rating scales [Robert et al., 2002; Sockeel et
al., 2006; Starkstein et al., 1992], which are limited because
of their dependency on human observers. Apathy is often
misdiagnosed, since characteristics (i.e. diminished inter-
est and psychomotor retardation) overlap with those of other
neuropsychiatric syndromes, such as depression [Yeager and
Hyer, 2008]. Albeit, correct and early diagnosis of apathy is
important, as e.g., in patients with MCI, a possible predeces-
sor of AD, apathy’s ’lack of interest’ domain has been shown
to be the strongest predictor of conversion to AD [Robert et

al., 2008]. Consequently, additional systematic and objective
assessment tools are needed [König et al., 2014].

Automatic speech analysis (ASA) in combination with ma-
chine learning (ML) have been shown to effectively predict
people with other neuropsychiatric syndromes, such as de-
pression [Cummins et al., 2015b; Asgari et al., 2014]. Mark-
ers automatically computed from speech are objective and
can be collected unobtrusively, rendering it a potential diag-
nostic tool.

This paper investigates the possibility of using acoustic
markers extracted from free emotional speech to automati-
cally classify people as having apathy. A short introduction
to related speech processing research is given (Section 2),
the experiment set-up is described (Section 3) and results and
their implications are discussed (Section 4).

2 Related Work
Little to no information and communication technologies
(ICT) have been previously applied in the assessment of
apathy—speech has never been used.

[König et al., 2014] performed a review of ICT for the
assessment of apathy and concluded that no one had previ-
ously used ICT specifically in this context, but that techniques
seemed promising. Since then, [Manera et al., 2015] evalu-
ated a serious game with dementia patients showing signs of
apathy. They found that patients with apathy played longer
than non-apathetic patients, while they found no difference in
the number of scenarios played. Since apathy seems to af-
fect emotion-based decision making, other attempts to mea-
sure it have been made, such as with the Iowa gambling task
[Bayard et al., 2014] or the Philadelphia Apathy Computer-
ized Task (PACT) [Fitts et al., 2016] detecting impairments
in goal-directed behavior including initiation, planning, and
motivation.

2.1 Speech Analysis in Depression
A large body of research validates the use of speech in the
assessment of depression. As a symptom, apathy has an as-
sociation with depression in the context of neurodegenerative
diseases [Levy et al., 1998]. Depression however, is rather
expressed as negative affect, whereas, apathy is observed
as emotional neutrality, where neither positive nor negative



Table 1: Demographic data of patients used in experiments. Statis-
tically significant group differences from the control group inside a
gender, based on a Mann-Witney-U test (p < 0.01) are indicated by
*.

Male Female
No Apathy No Apathy

N 25 32 38 23
Age 77.6 (6.8) 78.8 (6.2) 78.8 (6.5) 79.1 (6.0)
MMSE 21.9 (4.3) 19.1 (3.7) 20.1 (3.8) 17.9 (5.0)
AI 1.68 (1.6) 5.5∗ (1.6) 1.61 (1.7) 5.0∗ (1.8)

emotions are observed. Deficits in ’auto-activation’ and the
cognitive domain seem common in both and therefore results
from previous ASA studies on depression may be generalis-
able to apathy.

Previously, [Cummins et al., 2015b] investigated the ef-
fects of depression in speech manifesting as a reduction in
the spread of phonetic variability in acoustic space. They
analyse Average Weighted Variance (AWV), Acoustic Move-
ment (AM) and Acoustic Volume (AV) and conclude that de-
pressed people show significant reductions in all. [Asgari et
al., 2014] used speech features—including jitter and shim-
mer, harmonic to noise ratio (HNR) and mel frequency cep-
stral coefficients (MFCC)—and language features extracted
from natural conversation to detect depression. Speech fea-
tures alone performed better than only language features. The
best performance of 74% accuracy was reached with a com-
bination of speech and language features. [Alghowinem et
al., 2016] examined German and English speech data of de-
pressed patients from three different corpora. They extracted
vocal markers, such as fundamental frequencies (F0), energy,
intensity, loudness, jitter, shimmer, HNR and MFCCs, and
built classifiers to evaluate single resources and their combi-
nations. They achieve 97% accuracy for one and 82% for
two other corpora. [Mundt et al., 2012] elicited speech from
105 adults with major depression in a free speech, counting,
reading and a sustained vowel task. They extracted funda-
mental frequencies (F0), first and second formants and fea-
tures relating to the duration and proportion of silences and
vocalisations. All features relating to silences, pauses and
vocalisations were significantly different between the groups.

In general, speech analysis has found great applicability
to either screen for or to compute robust and objective met-
rics for depression. We hypothesise that due to the above
mentioned similarities some of the same features will show
merit.

3 Methods
To provide evidence for the potential of ASA in apathy as-
sessment, we recorded demented patients with and without
apathy, extracted accoustic features from the speech signal
and built, as well as evaluated, ML classifiers.

3.1 Data
Speech recordings from both the Dem@Care [Karakostas et
al., 2014] and the ELEMENT [Tröger et al., 2017] projects

were used. All participants were aged 65 or older and were
recruited through the Memory Clinic located at the Institute
Claude Pompidou in the Nice University Hospital. Speech
recordings were collected using an automated recording app
on a tablet computer.

To elicit free emotional speech, people were asked to to
perform two tasks: (1) talk about a positive event in their live
and (2) to talk about a negative event in their live. Instructions
were prerecorded to guarantee a standardised assessment.

Participants also completed a battery of cognitive tests, the
MMSE [Folstein et al., 1975] and the Apathy Inventory (AI)
[Robert et al., 2002]. Participants were excluded if they had
any major auditory or language problems, history of head
trauma, loss of consciousness, or psychotic or aberrant motor
behaviour. Following the clinical assessment, patients were
grouped into three categories in accordance with the DSM-V
diagnostic guide: patients without any impairment, minor im-
pairment or major impairment. In this study we only look at
patients with either minor or major impairments, to prevent
confounding of group differences by cognitive state. Males
and females are treated separately to account for differences
in acoustic features and anticipate differences in effects of
apathy [Cummins et al., 2017]. Patients are split into groups
according to their AI score (≥ 4) and groups are matched for
MMSE. Demographic data and clinical test results by diag-
nostic groups are reported in Table 1.

3.2 Features

Multiple features were extracted, some due to their previous
success in detection of depression [Cummins et al., 2015a]
and the overlap of symptoms in free speech between both
disorders, others encode task specific performance relating to
diminished goal directed behaviour as examined in apathy.

We extract statistics relating to lengths of silence and
sounding segments, determined based on intensity, calcu-
lated from the bandpass filtered sound signal, statistics re-
lating to the audible pitch, in the form of fundamental fre-
quency (F0), speech tempo, approximated using syllable nu-
clei [De Jong and Wempe, 2009], as provided by the Praat
software [Boersma and Weenink, 2001]. Micro level varia-
tions in amplitude and period—jitter and shimmer—were de-
termined using the openSmile software [Eyben et al., 2013].
A Matlab [MATLAB, 2010] script was used to compute
Harmonic-to-Noise-Ratio (HNR) and statistics over the first
three formants.

3.3 Classification

We construct ML models to verify the predictive power
of the extracted features to classify between people with
and without apathy. All features were normalised using
z-standardisation. As classifiers, Support Vector Machines
(SVMs) implemented in the scikit-learn framework [Pe-
dregosa et al., 2011] were used. To evaluate the performance
of the model on such a small dataset we rely on Leave-One-
Out cross validation. As a performance metric we report Area
under the Curve (AUC).



Figure 1: Receiver Operator Curves (ROC) of classification experi-
ments. Color coding and AUC is reported in legend. ’M’=Male;
’F’=Female; ’Neg’=Features from negative story; ’Pos’=Features
from positive story; ’All’=Features from both positive and negative
story

4 Results and Discussion
Classification results are reported in Figure 1. Results differ
depending on the origin of used features. In the male pop-
ulation, classification results improve significantly from an
AUC of 0.51 to 0.63 when using features from the negative
story in contrast to the positive one. The female population
shows the opposite behaviour with an increase in AUC from
0.50 to 0.71 switching from the negative to the positive task.
When using features from both positive and negative stories,
both male and female populations show worse performance
compared to their baselines, with an AUC of 0.70 and 0.53
respectively.

The classification results are a promising first step show-
ing that speech features clearly contain information relating
to apathy and could therefore be used in its assessment. As
anticipated, different patterns for males and females emerge.
Classifiers trained on features from the negative story show
superior performance for the male population, classifiers built
on features from the positive one for the female population.
We are unaware of any work on gender dependent symptoms
of apathy that could explain this pattern. Parts of this effect
could be explained by the fact that men from this generation
are in general less likely to talk enthusiastically about a pos-
itive event and show greater responses to threatening cues
[Kret and De Gelder, 2012]. Sex differences in emotional
processing and memory retrieval could be another reason and
should be further investigated, since current literature mostly
focuses on exploring age as a variable. We conclude that ASA
has the potential to be useful in the assessment of apathy, that
the type of stimulus speech is being provoked with might play
a major role and might have to be adapted depending on a pa-
tients’ gender.

Further work should examine what features in particular
are predictive for apathy, how they relate to depression and
how the two could be discriminated. Since patient data is al-
ways hard to acquire, our sample is relatively small and future
studies should strive to draw more conclusive evidence from

larger datasets.
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