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Abstract
We present a new workflow to create components for the MaryTTS text-to-speech synthesis platform, which is popular with researchers
and developers, extending it to support new languages and custom synthetic voices. This workflow replaces the previous toolkit
with an efficient, flexible process that leverages modern build automation and cloud-hosted infrastructure. Moreover, it is compatible
with the updated MaryTTS architecture, enabling new features and state-of-the-art paradigms such as synthesis based on deep neural
networks (DNNs). Like MaryTTS itself, the new tools are free, open source software (FOSS), and promote the use of open data.
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1. Introduction

Over the last 15 years, MaryTTS (Schröder and Trouvain,
2001) has become one of the reference systems for open
source text-to-speech synthesis (TTS). Today, it is actively
used by researchers working in speech science, human-
computer interaction (HCI), and related fields, as well as
by professional and enthusiast software developers in free,
open source software (FOSS) or enterprise settings. Its
popularity is due in part to the number of languages and
voices which are freely available as open resources, as well
as the possibility of extending it to support new languages
and building custom synthetic voices, or even integrating
MaryTTS as a component into more complex applications,
such as TTS web services, accessibility software, or spoken
dialog systems (SDSs). Because of its implementation in
the Java programming language, MaryTTS can be used
on any device or computer with a Java Runtime Environ-
ment (JRE), and its modular design allows developers and
users alike to inspect and customize the entire processing
pipeline from input text to speech output.

However, the number of people who have participated in,
and contributed to, MaryTTS development over the years
has led to a complex and overburdened system. Conse-
quently, a reboot of the system became unavoidable; until
now, we focused on restructuring the system core and ex-
plained the philosophy behind the new architecture (Le Ma-
guer and Steiner, 2017a; Le Maguer and Steiner, 2017b).

Independently, the process of creating new synthetic voices
and support for new languages in MaryTTS has also fun-
damentally evolved since it was presented by Pammi et al.
(2010). Therefore, the current paper presents the new lan-
guage and voice building workflow for MaryTTS.

The remainder of the paper is structured as follows. Sec-
tion 2 provides a brief background on build automation in
MaryTTS. In Section 3, we present the new workflow to
add support for a new language. Then, in Section 4, we
focus on the new voice building pipeline. Finally, in Sec-
tion 5, we present the reorganized source code and project
hosting, particularly from a user perspective.

2. Background
Development on MaryTTS has adopted several significant
paradigms which had become best practice in Java-based
software engineering in the years since the project’s incep-
tion. These include,
dependency management, where required software libraries

are downloaded from cloud-based repositories,1

software testing, and
convention over configuration, where common standards

are integrated into the software build lifecycle without
the need for redundant specification.

In the latest version of MaryTTS, all of these aspects are
managed through the Gradle build automation tool.2

The increase in flexibility and efficiency provided by Gra-
dle is not limited to the development “under the hood”.
Rather, we leverage Gradle as a user-facing tool which re-
places the custom applications previously required to add
new languages to MaryTTS, or build new synthetic voices.
This shift removes numerous limitations on performance
and functionality, and solves common, recurring problems
with installing third-party tools and writing boilerplate code
for new MaryTTS components. At the same time, the text
and speech data itself — required to build new components
— can be managed as dependencies, and the components
can be built, tested, and distributed more efficiently.
An overview of the entire workflow to create new language
and synthetic voice components is shown in Figure 1. How-
ever, this workflow can be broken up into several indepen-
dent steps, which are described in the following sections.

3. New Language Support
The purpose of a language component in MaryTTS is to
allow the system to extract linguistic features from ortho-
graphic text using natural language processing (NLP). This
includes, at the very least, the sequence of phonemes, i.e.,
the pronunciation, but typically also other features related

1Examples of such dependencies in MaryTTS include third-party
libraries for text tokenization (JTok), number expansion (ICU4J),
and part-of-speech (POS) tagging (OpenNLP).

2https://gradle.org/
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lexicon resource

speech corpus Bintray Gradle Plugins Portal

GitHub

obtains lexicon resource
applies
lexicon-compiler-plugin

trains lexicon FST and G2P rules

publishes marytts-lexicon-xy

(a) The lexicon project, which resolves or con-
tains lexicon resources and is published to Bin-
tray.

depends on marytts-lexicon-xy

provides NLP modules for language “xy”

publishes marytts-lang-xy

(b) The language project depends on the lexicon
project, may contain other modules, and is pub-
lished to Bintray.

obtains audio and text resources
obtains phonetic annotation or
applies kaldi-mfa-plugin

publishes
speaker-somename-xy-data

(c) The data project resolves audio and text from a
speech corpus and either converts provided pho-
netic annotation or runs forced alignment using
the language project. It can be published to
GitHub as a release asset.

depends on marytts-lang-xy and
speaker-somename-xy-data

applies voicebuilding-plugin
1. extracts acoustic features from audio
2. extracts linguistic features from text
3. aligns features based on phonetic labels
4. builds models
5. packages data (for unit selection)

publishes voice-somename-xy

(d) The voice project resolves the processed data
from the cloud (e.g., downloading from GitHub),
runs all steps required to build a voice, and is pub-
lished to Bintray. Large unit selection voice pack-
ages can be published to GitHub as release assets.

Figure 1: Overview of the complete workflow for a new language “xy” and synthetic voice components. Dashed blue arrows
visualize the dependency of the voice project (Figure 1d) on the language and data projects (Figures 1b and 1c, respectively),
the dependency of the data project on the language project, and the language project on the lexicon project (Figure 1a). All
of these depend on the core MaryTTS runtime libraries (not shown), which are resolved from Bintray. Orange and purple
arrows show the actual dependency resolution from, and publishing to, cloud-hosted services, respectively. Green arrows
show plugins resolved from the Gradle Plugins Portal. Note that all or part of the cloud-hosted infrastructure (shown inside
the cloud) could also be replaced by internal, non-public repositories.

to phonology and used for the prediction of acoustic param-
eters, such as segment duration and fundamental frequency
(F0). Pronunciation prediction in MaryTTS is handled by
a language-specific “Phonemiser” module, which looks up
each text token in a lexicon and returns the sequence of
phonemes. For any out-of-vocabulary (OOV) tokens, the
module falls back to rules for grapheme-to-phoneme (G2P)
prediction.

To add support for a new language to MaryTTS, the first
step is to define the set of phonemes to be used, along
with their standard phonological features, based on the
International Phonetic Alphabet (IPA). The next step is
to obtain (or create) a lexicon resource, ideally a text file,
spreadsheet, etc., containing a list of words with their or-

thographic and corresponding phonetic transcription.
Finally, the lexicon is automatically compiled into a finite
state transducer (FST)-based representation, relying in part
on the WEKA toolkit (Hall et al., 2009). In the past, this
was done using the custom TranscriptionTool GUI appli-
cation (Pammi et al., 2010), which however suffers from
various usability and performance issues. To improve this
situation, we have developed a Gradle plugin3 to convert
the lexicon into the format required by MaryTTS. Further-
more, we are currently developing a more state-of-the-art
G2P approach based on TensorFlow (Abadi et al., 2016),

3https://github.com/marytts/gradle-marytts-lexicon-compiler-
plugin
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comparable to that of, e.g., van Esch et al. (2016).
It is possible to create further NLP modules for the new lan-
guage component, handling text normalization to expand
acronyms, numbers, and so on, into pronounceable repre-
sentations, POS tagging, etc. Alternatively, MaryTTS can
just fall back to generic modules for such tasks. All of these
modules are then combined to build the new language com-
ponent, which will be used to process input text, and rep-
resents a dependency of the synthetic voice building, and
ultimately, full TTS in the new language.

4. Voice Building
Building a new synthesis voice for MaryTTS consists of
three distinct stages, (a) data preparation, (b) feature ex-
traction, and (c) model building, which are described in the
following subsections. All three stages are handled effi-
ciently using Gradle plugins,4 which wrap third-party tools
and can run tasks in parallel where appropriate, speeding
up the voice building process significantly compared to the
old toolkit.

4.1. Data Preparation
When preparing the recording of speech data intended to
create a new synthesis voice, it is common practice to cre-
ate a prompt list which covers the phonetic (and possibly
prosodic) inventory of the corresponding language, as well
as the content of the voice’s domain. These prompts are
then read out by the voice talent over one or more record-
ing sessions, preferably in a studio environment.
The previous voice creation toolkit (Pammi et al., 2010)
promoted the use of a custom Java-based recording tool
named Redstart, which is able to display a sequence of
prompts on a computer screen and record the user reading
them through the computer’s microphone. While MaryTTS
Redstart remains fully functional, it may not be usable in
every recording scenario. For instance, in a professional
recording studio, the voice talent is typically recorded us-
ing a digital audio workstation (DAW), and any visual pre-
sentation of prompts may only be possible using a separate
computer. In other cases, the goal may be to record a more
fluent performance (such as an audiobook), and a user expe-
rience that forces the voice talent to pause for each prompt
would be too disruptive.
Regardless of which text prompts are selected, or how they
are recorded, the outcome of this process is a set of text
and audio files with corresponding contents. However, be-
fore these files can be used to build a synthetic voice for
MaryTTS, they have to be phonetically annotated. This
step requires determining the pronunciation of each text
prompt, i.e., the sequence of phonetic units, and mapping
them to the recorded audio’s time domain; the process is
related to automatic speech recognition (ASR), except that
the expected content is known, and the sequence of pho-
netic units can be forced to align with the audio; this is
known as forced alignment. In the past, the MaryTTS voice
building tools relied on integrating third-party tools for this
task, including Sphinx-4 (Walker et al., 2004), HTK (Young
et al., 2006), or the FestVox tool EHMM (Prahallad et al.,

4https://github.com/marytts/gradle-marytts-voicebuilding-plugin

2006); however, MaryTTS users often report problems in-
stalling or running them, and errors are difficult to solve.
More recently, Kaldi (Povey et al., 2011) has emerged as
a leading ASR toolkit, and it has been integrated into the
Montreal Forced Aligner tool (McAuliffe et al., 2017). This
tool in turn has been integrated into the MaryTTS data
preparation workflow in the form of a Gradle plugin.5 The
pronunciation can be predicted using MaryTTS and col-
lected into a custom dictionary for Kaldi, then acoustic
models are trained from the recorded data, and the phonetic
unit boundaries are aligned and stored in the form of Praat
TextGrids; this process is fully automated and can take a
few minutes or hours, depending on the amount of recorded
data.
Previously, the forced alignment process was described as
part of the voice building process in MaryTTS (Pammi et
al., 2010), but it can be more appropriately regarded as a
prerequisite. While it is still possible to use both the forced
alignment and voice building plugins in the same Gradle
project, a more efficient workflow is to build a data artifact,
which is then available as a dependency for the proper voice
building process. Therefore, this stage can be skipped if a
corpus of speech data is already available with appropriate
orthographic and phonetic annotations.

4.2. Feature Extraction
At the core of the voice building process, the recorded
speech data is converted to a feature representation. It
is this feature representation which allows the use of ma-
chine learning techniques to train models to predict prosody
and/or vocoder parameters from text during the actual TTS
process in the runtime system.
The feature extraction stage of the voice building process
yields a combination of frame-wise feature vectors from
acoustic analysis of the audio, and time-aligned symbolic
features based on linguistic analysis of the corresponding
text; the alignment is based on the phonetic annotation ob-
tained in the data preparation (cf. Section 4.1).
Acoustic features include F0, tracked using Praat (Boersma,
2001), and mel-frequency cepstral coefficients (MFCCs),
extracted using the Edinburgh Speech Tools (EST) (King et
al., 2003). The linguistic features are obtained depending
on the MaryTTS language component for the correspond-
ing language. When creating a synthetic voice for a new
language, this is where the new language component built
previously (cf. Section 3) is used. The linguistic features
extracted and assigned to the feature vectors include sev-
eral related to phonology (e.g., distinctive features, position
in the syllable, stress, accent), syntax (e.g., POS, distance
to phrase and sentence boundaries), and — optionally —
speaking style (Steiner et al., 2010; Charfuelan and Steiner,
2013), information density (Le Maguer et al., 2016), or
other high-level context features.

4.3. Model Building
Depending on the underlying synthesis paradigm, it is pos-
sible to build a unit selection voice or a statistical paramet-
ric synthesis voice.

5https://github.com/marytts/gradle-marytts-kaldi-mfa-plugin
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4.3.1. Unit Selection
Unit selection synthesis concatenates halfphone-sized snip-
pets of natural speech selected from a voice database, given
target features computed for an input utterance. The out-
put can sound very natural, but often suffers from audible
glitches when synthesizing out-of-domain utterances, and
prosody control is limited. Moreover, the voice database
can be very large, as it contains the actual audio data.
Building a unit selection voice for MaryTTS involves stor-
ing the feature representation and related metadata for each
unit, training statistical models for sparse prosody predic-
tion, and packaging these along with the actual audio data.
We have created a Gradle plugin which wraps some of the
old toolkit’s components to assemble unit selection voices
which are backward-compatible with the current stable re-
lease of MaryTTS (v5.2). In addition, we are develop-
ing new build tools to support audio compression and en-
able prosody modeling and target feature prediction using
hidden Markov models (HMMs) or deep neural networks
(DNNs), paving the way for state-of-the-art “hybrid” TTS.

4.3.2. Statistical Parametric Synthesis
MaryTTS has supported statistical parametric synthesis for
numerous years, using a Java port of the HMM based
speech synthesis system (HTS) engine API6 with a mel-
generalized log spectrum approximation (MLSA) vocoder.
Although such synthesis can sound rather buzzy and un-
natural, these HMM-based voices offer higher flexibility
and more consistent quality than unit-selection synthesis,
as well as a much smaller memory footprint. However,
some drawbacks are (a) that building HMM-based voices
for MaryTTS has a high technical overhead, and (b) that
the Java port has become quite outdated, while HTS de-
velopment has seen significant progress. The former has
been mitigated by providing a consistent, pre-configured
Docker container, while to address the latter, we are de-
veloping completely new functionality. This includes the
possibility to train models for third-party frameworks such
as Merlin (Wu et al., 2016) and to allow other vocoders to
be used, including STRAIGHT (Kawahara et al., 1999) or
WORLD (Morise et al., 2016).
The parametric voice building process comprises three
stages: the input and output feature packing, the model
training, and the voice configuration generation. The voice
configuration generation is similar to the unit selection
voice building part (cf. Section 4.3.1). The output feature
packing goal is just to adapt the acoustic features (e.g., mel-
generalized cepstrum (MGC), F0, band aperiodicity (BAP),
etc.) to be compatible with the process used to train the
models. Currently this means computing the delta and
delta-delta coefficients and generating the binary observa-
tion vector for each utterance. The input feature packing
consists of calling MaryTTS with a serializer dedicated to
the training process.
The model training is a specific plugin implementing the
process to train the models needed for the synthesis stage.
We have developed a Gradle plugin dedicated to train HTS
models (HMM-GMM or HMM-DNN).7 This plugin can be

6http://hts-engine.sourceforge.net/
7https://github.com/marytts/gradle-hts-voicebuilding-plugin

adapted to the kind of parametric synthesis model or system
we want to use.

4.4. New Configuration Mechanism
Previously a configuration was attached to an artifact to
configure the different modules. Moving forward, we con-
sider three levels of configuration: the default configura-
tion, the voice configuration, and the user configuration.
The first of these is given in the module itself. The voice
configuration corresponds to the parametrization of each
module used during the voice building process and has pri-
ority over the default configuration. Finally, a user config-
uration can be specified at runtime, to override the other
configurations.

5. Global Project Management
Refactoring the core system and of the voice building pro-
cess has allowed us to separate the source code manage-
ment (SCM) for each language and each voice project.
Therefore, each language and voice can have its own SCM
repository hosted on GitHub,8 while the released artifacts
are published to Bintray9 and indexed in JCenter.10 Any
large data objects (specifically unit selection audio data)
can be hosted on GitHub as release assets.
This makes the custom Component Installer GUI from pre-
vious MaryTTS versions obsolete, and allows us to replace
it with a lightweight wrapper around the dependency man-
agement. A user can install and run MaryTTS voices and
language components simply by executing Gradle tasks
with the corresponding names; this is demonstrated by a
new web installer for MaryTTS.11

Meanwhile, developers and researchers looking to integrate
MaryTTS into their projects, only need to declare a depen-
dency on the desired voice artifacts, and this will automati-
cally resolve all transitive dependencies on the correspond-
ing languages and other libraries.

6. Conclusion
In conclusion, we have presented a new language and voice
building workflow designed for the updated MaryTTS sys-
tem. We have detailed our reliance on the Gradle build au-
tomation tool, which provides a much more efficient and
powerful framework via its extensible plugin system than
the previous toolkit. We have also seen that the language
components maintain the same concepts as in previous ver-
sions, but the methodologies used are updated. Finally, we
have described the redesigned and extended voice building
process, as well as our leverage of cloud-based infrastruc-
ture for hosting and distribution.
The next stage is to integrate the new MaryTTS core, state-
of-the-art synthesis paradigms, and the new build system
more deeply to provide the fully modular, modern TTS
platform we are aiming for. Moreover, we are working to
release the first preview of MaryTTS v6.0 in the coming
months.

8e.g., https://github.com/marytts/voice-dfki-spike
9https://bintray.com/marytts/marytts
10https://bintray.com/bintray/jcenter
11https://github.com/marytts/marytts-installer
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