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Abstract

The application of reconfigurable multi-robot systems
introduces additional degrees of freedom to design
robotic missions compared to classical multi-robot sys-
tems. To allow for autonomous operation of such sys-
tems, planning approaches have to be investigated that
can not only cope with the combinatorial challenge aris-
ing from the increased flexibility of combining systems,
but also exploit this flexibility to improve for exam-
ple the safety of operation. While the problem origi-
nates from the domain of robotics it is of general nature
and significantly intersects with operations research.
This paper suggests a constraint-based mission plan-
ning approach, and presents our revised definitions for
reconfigurable multi-robot systems including the repre-
sentation of the planning problem using spatially and
temporally qualified resource constraints. Planning is
performed using a multi-stage approach, and a com-
bined use of knowledge-based reasoning, constraint-
based programming and integer linear programming.
The paper concludes with the illustration of the solution
of a planned example mission.

1 Introduction
Flexibility is the primary feature of reconfigurable multi-
robot systems, since their modularity adds an additional de-
gree of freedom to design robotic operations compared to
the application of traditional multi-robot systems. For that
reason Dignum et al. (Dignum 2009) discuss the so-called
strategic flexibility, which offers an exploitation of proac-
tive and reactive adjustment in the context of reconfigurable
organizations. The strategic flexibility allows to tackle a set
of unforeseen tasks with a robustly equipped system that al-
lows recovery from malfunction thanks to increased redun-
dancy. Exploiting strategic flexibility provides a strong moti-
vation to combine increasingly capable autonomous robotic
systems with a concept for modularity.

The main benefit of reconfigurable multi-robot systems
lies in the fact that resources can easily, although not ar-
bitrarily, be (re)used by any agent being a member of the
reconfigurable system. Using this flexibility allows to bal-
ance resource usage and hence to adapt dynamically to op-
erational demands. While modularity can lead to significant
operational advantages it has drawbacks: if the level of mod-
ularity is chosen arbitrarily high this can lead to less capa-

ble systems. One can observe the effect in swarm-based sys-
tems, which come with a high degree of modularity: a swarm
typically consists of cheap agents with a simple design, and
thus , apart from emergent high-level behaviors, these agents
come with a rather limited applicability by design. Although
the mentioned emergent behaviors can be exploited, these
behaviours remain harder to control or will be focused on a
single task only. In general, reconfigurable multi-robot sys-
tems offer a feasible solution which consists of a mix of in-
dividually capable agents, including swarm-like units that
can augment the overall robotic team. This augmentation is
done either by acting as a fully autonomous agent or as an
extension unit. Roehr et al. (Roehr, Cordes, and Kirchner
2014) implement this idea in the context of robotic space
exploration missions in order to show the general feasibility
and identify critical limitations: the implemented approach
validates the potential for increasing the flexibility in future
robotic missions, but it also comes with increased opera-
tional demands. Thus, they suggest the introduction of a ded-
icated system model in order to automate operation of recon-
figurable multi-robot systems and exploit the offered system
capabilities to improve not only efficiency, but also safety
of future robotic missions. Roehr and Kirchner (Roehr and
Kirchner 2016) show how planning as essential element for
automated operation for such a reconfigurable multi-robot
system can be approached.

This paper details the problem definition and presents the
results of the continued development of the planning ap-
proach. In Section 2 we briefly outline relevant background
references for the state of the art. Section 3 introduces the
planning problem, and in Section 4 we give details on the
organization model and its extended use. Section 5 outlines
the revised planning approach. We close with a conclusion
and outlook in Section 6.

2 Background
The initial motivation for the planning problem is given
by Sonsalla et al. (Sonsalla et al. 2014), where a reconfig-
urable multi-robot system shall establish a logistics chain
operation in order to support sample-return missions as
part of extraterrestrial exploration. The robotic team con-
sists of mobile and immobile agents, which can be physi-
cally connected via a set of electro-mechanical interfaces.
By connecting one or more robots, they can form a new



type of agent, comprising features none of the individual
agents offers. The ability for reconfiguration offers novel
ways of dealing with robotic missions, but Roehr and Kirch-
ner (Roehr and Kirchner 2016) is to our best knowledge
the only approach particularly dealing with reconfigurabil-
ity. This mission planning problem can be understood as a
logistic planning problem where mobile robots can trans-
port other immobile and mobile robots. Hence, it is closely
related to the Vehicle Routing Problem (VRP) (Toth and
Vigo 2014): a fleet of (most often homogeneous) mobile
vehicles shall serve a set of customers, e.g., by delivering
and/or picking up items, while minimizing a cost function
– typically the overall travelled distance. The VRP applies
to transportation and logistics scenarios and comes in many
variants among which Capacitated VRP (CVRP), VRP with
Time Windows (VRPTW) and VRP with Pick-up and De-
livery (VRPPD) are the most popular ones. The pickup-and
delivery problem can be further distinguished into a many-
to-many (M-M), one-to-many-to-one (1-M-1), and one-to-
one (1-1) problems, where the notation can be read as car-
dinalities for the origin, transition point, and target of a
commodity, i.e. from-to or from-via-to. The M-M variant
for example accounts for multiple commodity (good) ori-
gins and destinations, while the 1-M-1 variants assume a
start and end of all vehicles at a single depot. The ma-
jority of these approaches are either focusing on a single-
commodity case, homogeneous vehicle capacities or opti-
mization of routing cost, were our approach has to deal with
multi-commodities, heterogeneous vehicles, multi-depots,
and fleet size optimization. Hence, a closer relation can be
established to more specialized VRP approaches, e.g., such
as the Heterogeneous or mixed Fleet VRP (HFVRP) (Bal-
dacci, Battarra, and Vigo 2008) which accounts for a hetero-
geneous fleet and optionally with unlimited vehicle avail-
ability, or Dondo et al. (Dondo and Cerdá 2007) who
approach Multi-depot heterogeneous fleet VRP with time
windows (MDHFVRPTW). The variant VRP with Trailers
and Transshipments (VRPTT) and more generalized VRP
with multiple synchronization constraints (VRPMSs) (Drexl
2013) adds synchronization constraints between vehicles,
which form a special instance of a reconfigurable multi-
agent system containing agents or in this case vehicles of dif-
ferent categories: autonomous and non-autonomous, as well
as support and task vehicles. Drexl (Drexl 2013) formulates
a graph-based modelling approach to account for the inter-
dependence of vehicles. He does not, however, provide an
implementation of a solution approach.

While much of the research in VRP originates from the
area of operational research, Coltin and Veloso (Coltin and
Veloso 2014a; 2014b; 2014c) investigate a pick-up and de-
livery variant in the context of multi-robot systems and
also apply their approach to a taxi problem with rideshar-
ing. They implement optimal approaches as well as meta-
heuristics, in particular simulated annealing, and Very Large
Neighborhood Search (VLNS) (Ahuja, Orlin, and Sharma
2000) their application of VLNS results not only in a scal-
able approach, but also proves a general benefit of using
transfers in a pickup and delivery scenario. In Section 3 we
will outline the distinction between existing VRP and our

approach, and provide additional constraints for our mission
planning problem.

3 Mission Representation
The planning problem presented in the following aims to
solve the problem of planning and scheduling a mission per-
formed by a reconfigurable multi-robot system. While a mis-
sion can initially be seen as a task assignment for a multi-
robot system, here it comes with an essential difference:
agents are able to dynamically form physical coalitions re-
ferred to as composite agents. These composite agents are
formed for three main reasons. Firstly, to perform agent
transport: one carrier agent attaches one or multiple (most
likely, but not necessarily) immobile systems. Secondly, to
provide functionality: some functionality is only available
as so-called super-additive effect and requires two or more
agents to join so that this functionality becomes available
only for this composite agent, but not for the individual
agents. Thirdly, to increase the functional redundancy: for
agents that are assigned to fulfil requirements, we assume
that adding relevant resources improves the redundancy and
safety of operation, and effectively the likelihood of a suc-
cessful performance of an agent.

While most VRP assume homogeneous agents, the team
of agents in a reconfigurable multi-robot system is formed
by heterogeneous agents; agents with individual capabilities
and functionalities, as well as limitations to reconfigure and
constraining attributes such as an overall transport capacity.
We will look at a mission as a particular (minimal) partition-
ing problem of an agent team to achieve a requested agent-
and function-distribution over space and time.

Definitions & Assumptions
In the following we introduce the basic notation, definitions
and assumptions regarding reconfigurable multi-robot sys-
tems. The provided definitions describe a modular multi-
agent system, which can form composite agents from a set
of available agents:

Definition 3.1. An atomic agent a represents a monolithic
physical robotic system, where A = {a1, . . . , |A|}, is the set
of all atomic agents, and a ∈ A or equivalently {a} ⊆ A.

Definition 3.2. A mechanically coupled system of two or
more atomic agents is denoted a composite agent CA,
where CA ⊆ A, and |CA| > 1.

Definition 3.3. The type of an atomic agent a is denoted â
and equivalently for a composite agent CA the type is de-
noted ĈA. The set of all agent types is denoted θ(A) =
{1, . . . , |θ(A)|}, with the corresponding type-partitioned
sets A1, . . . , A|θ(A)|, where A = A1 ∪ · · · ∪A|θ(A)|.

Definition 3.4. A (general) agent is denoted GA, where
GA ⊆ A, and GA 6= ∅. A (general) agent represents the
wrapping concept for atomic and composite agents, with
the corresponding type-partitioned setsGA1, . . . , GA|θ(A)|,
where GA = GA1 ∪ · · · ∪GA|θ(A)|

Definition 3.5. A (general) agent type ĜA will be repre-
sented as a function γ

ĜA
: θ(A) → N0, which maps an



atomic agent type â to the cardinality câ of the type par-
tition, such that câ = |GAâ|. The set of all constructible
general agent types from a set of atomic agents A is denoted
θ(Â); it represents the collection of all general agent types
that are found in the powerset of all agents PA.

Note, that a general agent type can equivalently be repre-
sented as tuple set of agent type and type cardinality: ĜA =
{(â1, c1), . . . , (ân, cn)}, where ai ∈ A and ci = |GAi|.
ĜA ⊇ ĜA′ ⇐⇒ ∀(ai, ci) ∈ ĜA, (âi, c′i) ∈ ĜA′ : ci ≥
c′i, where i = 1 . . . |A|.
Definition 3.6. A set of atomic agentsA is denoted an agent
pool and it can be represented by a general agent type ĜA,
such that ∀a ∈ A : γ

ĜA
(â) = |Aâ|.

Definition 3.7. An atomic agent role râ represents an
anonymous agent instance of an atomic agent type â.
Definition 3.8. A coalition structure of an agent set A is
denoted CSA and is represented by a set of disjunct gen-
eral agents CSA = {GA0, . . . , GAn}, where GA0 ∪ · · · ∪
GAn = A, and ∀i, j ∧ i 6= j : GAi ∩GAj = ∅.

Assumptions
Our design of the organization model and planning system
for a reconfigurable multi-robot system, which both will be
detailed in the following section, is based on a set of assump-
tions to simplify the modelling approach.
Assumption 3.1. Each atomic and composite agent can be
mapped to a single agent type only.
A reconfigurable multi-robot system requires coupling inter-
faces, e.g., an electro-mechanical interface (Dettmann et al.
2011), to create physical linking between atomic agents to
establish a composite system. Although multiple links could
be considered between any two agents, interfaces cannot be
arbitrarily coupled and the following assumption holds:
Assumption 3.2. A mechanical coupling between two
atomic agents can only be established through a single link
and two and only two compatible physical coupling inter-
faces.

Mission specification
The mission specification is a temporal database description,
and it defines the initial, intermediate and goal state for a re-
configurable multi-robot system. A valid mission specifica-
tion is described by the following two definitions:
Definition 3.9. A spatio-temporal requirement is a spatio-
temporally qualified expression (stqe) s which describes the
functional requirements and agent instance requirements
for a given time-interval and a particular location: s =
(F , ĜAr)@(l, [ts, te]), whereF is a set of functionality con-
stants, ĜAr is the general agent type representing the re-
quired atomic agent type cardinalities, l ∈ L is a location
variable, and ts, te ∈ T are temporal variables describing a
temporal interval with the implicit constraint ts < te. Vari-
ables associated with s will also be referred to using the
following notation: Fs,ĜA

s

r,l
s,tss, and tse.

t0 t1 t2 t3 t4 t5 . . .

l0

l1

[ ](∅,Ĉ0)

[ ](F0,{(â0, 3)})[ ](∅,Ĉ1)

Figure 1: A mission specification example based on a space-
time representation

Definition 3.10. The robotic mission is a tuple M =

〈ĜA, STR,X ,OM〉, where the agent pool ĜA describes
the available set of agents, STR is a set of spatio-temporally
qualified expressions, X is a set of constraints, and OM
represents the organization model.

The initial state is defined by the earliest timepoint and
binds available agents to their starting depot. The earliest
timepoint is t0 ∈ T and ∀t ∈ T, t 6= t0 : t > t0. Figure 1
illustrates a mission specification, where

ĜA = {(â0, 3), (â1, 2)},

STR = {(∅, Ĉ0)@(l0, [t0, t1]), (∅, Ĉ1)@(l1, [t0, t1]),

(F0, {(â0, 3)})@(l1, [t3, t5])}
X = {t0 < t1, . . . , t4 < t5}

OM = {mobile(â0),¬mobile(â1), . . .}

Ĉ0 = {(â0, 2), (â1, 1)}, Ĉ1 = {(â0, 1), (â1, 1)}, l0, l1 are
location variables and t0, . . . , t5 are timepoint variables.
Two general agents Ĉ0 and Ĉ1 are assigned to location l0
and l1 respectively. Two stqes related to the interval [t0, t1]
define the initial agent assignments; no functional require-
ments are part of the initial state description. The goal state
is defined over the interval [t3, t5] and requires a function-
ality set F0 in combination of least 3 agents of type â0 at
location l1.

Mission constraints
A mission can be detailed by constraints in the constraint
set X . The only initially required constraints are temporal
ones to describe the starting state, e.g., in the presented ex-
ample all stqes relating to a start at t0, e.g., cardinality con-
straints allow to set upper and lower bounds on the usage of
agents and functionalities to reduce the combinatorial chal-
lenge. Other optional constraints can be added to detail and
constrain the evolution of a mission. The following list de-
scribes the available constraint types; minimum constraints
come with a corresponding max constraint implementation:
temporal qualitative timepoints describe time intervals,

where timepoint constraints are provided using point al-
gebra (<,>,=) (Dechter 2003).

duration minDuration(s, t), s ∈ STR : sets a lower
bound of time t for the duration of the time interval as-
sociated with the stqe s.

min cardinality minCard(s, â, cmin), s ∈ STR : repre-
sents a minimum cardinality constraint so that |GAâ| ≥
cmin



all distinct allDistinct(S, â) describes the constraint:
∀s ∈ S :

⋂
Aâ,s = ∅, where S ⊆ STR, and Aâ,s repre-

sents the subset of agents of type â which are associated
with the stqe s.

min distinct minDistinct(S, â, n) describes the con-
straint: ∀si, sj ∈ S, i 6= j :

∣∣|Aâ,si | − |Aâ,sj |∣∣ ≥ n,
where n ≥ 0, S ⊆ STR, and Aâ,s represents the par-
tition of A which contains only agents of type â which
are associated with the stqe s.

all equal allEqual(S,Ae) describes the constraint: ∀s ∈
S∃Ae : Ae = Asr, where Ae ⊆ A, S ⊆ STR.

min equal minEqual(S,Ae) describes the constraint:
∀s ∈ S∃Ae : Ae ⊂ Ase, where Ae ⊂ A, S ⊂ STR.

min-function minFunc(s, f): requirement for a function-
ality f to be available at stqe s: f ∈ Fs

min-property minProp(s, f, p, n) constrains the property
pf of a functionality f to be pf ≥ n, where the constraint
implies minFunc(s, f)

To handle service preferences within this representation,
e.g., when a particular agent should visit two distinct lo-
cations, equality constraints are required. An equality con-
straints can define partial or full paths for the same instances
of agents, e.g., to control that the same agent visiting loca-
tion l0 at timepoint t0 will also visit location l1 at t1. Detail-
ing functionality request with min and max property con-
straints are motivated by informed repair strategies, e.g., a
property constraint can demand a mobile agent with a par-
ticular transport capacity. In Section 4 we will detail this
reasoning further.

Distinction & Observation
Existing VRP based approaches most often only consider a
subset of the presented constraints, while the mission plan-
ning problem formulation embeds the following VRP prop-
erties: time windows, capacity constraints, heterogeneous
agents, fleet size minimization and vehicle synchronization.
Furthermore, additional special features are introduced: (i) it
is not only accounted for commodity demand, but rather a
combination of commodities and vehicles that provide cer-
tain functional properties; (ii) the use of qualitative temporal
constraints (in contrast to hard or soft quantitative time win-
dows), which enables partially ordered requirements and in-
crease the flexibility to synchronize agent activities; (iii) the
mix-in of a multi-pickup multi-delivery problem in contrast
to a single drop-off.

4 Organization Modeling
To reason upon a reconfigurable multi-robot system a spe-
cial so-called organization model is introduced which de-
scribes all resources that can be part of a reconfigurable
multi-robot team: atomic agents as well as their functionali-
ties and properties thereof. As detailed in (Roehr and Kirch-
ner 2016) the organization model builds upon an ontological
description, which: (a) encodes information about resources
that are associated with agent types, (b) associates interfaces
with agent types, (c) defines compatibility between inter-
faces, (d) allows the identification of feasible, and (e) allows

inferencing functionality of composite agents.
In combination of all features the organization model

serves as main reasoner to identify composite agents and
coalition structures, which are suitable to support a set of
time and location bounded functional requirements.

The following sections will describe agent properties, and
the details of identifying feasible composite agents, and sub-
sequently suitable agent with respect to a given functional-
ity.

Atomic agent type
Each agent type is associated with the following essential
attributes:
mobility mobile(â) defines whether an agent of type â is

mobile or not.
transport capacity tcap(â) defines the maximum total ca-

pacity (measured in storage units) of an agent of type â to
transport others, and tcap(âi, âj) defines the maximum
capacity of an agent type âi to transport an agent type âj .

capacity consumption tcon(â) defines the number of stor-
age units an agent of type â consumes temporarily when
being transported (currently this is set to 1 by default);

velocity vnom(â) defines the nominal velocity of an agent
type â, vnom ≥ 0 for mobile atomic agent types and
vnom = 0 for immobile

power pw(â) defines the nominal required power to operate
an agent of type â

mass mass(â) defines the mass of an agent
energy energy(â) defines the available electrical energy

that initially comes with an atomic agent

General and composite agent type
Some properties of composite agents can be inferred from
their compositing atomic agents: Avella et al. (Avella, Boc-
cia, and Sforza 2004) (though in the context of route con-
straints) label these as ’numerical totalisable’, e.g., here
mass and energy, which can be easily represented as sum of
the property values of each atomic agent forming the com-
posite agent. Inferring the capacity, in contrast, can be com-
plex due to geometrical packaging constraints. The present
model, however, currently ignores geometrical packing con-
straints and checks only connectivity based on interface
compatibility.

Feasible agents
The main feature of a reconfigurable multi-robot system is
the possibility for physical interconnection, but the not all
composite agents are feasible. The compatibility and avail-
ability of connecting interfaces can restrict the design of
a fully connected composite agent. Interfaces can come in
different variants, e.g., for the reference system in (Roehr
and Hartanto 2014) a male and female (also referred to as
EmiPassive and EmiActive). But only one male and one fe-
male interface can be coupled. Atomic agents can comprise
any number of interfaces, but based on Assumption 3.2 ex-
actly one interface can be used for the connection to another
agent’s interface. For a successful connection, both inter-
faces need to be compatible.



Checking feasibility is a matching problem for graphG =
(V,E), with constraints for the existence of edges, where a
vertex v ∈ V represents a single interface. We denote IA as
the set of all interfaces of a set of agent A, so that V = IA

with the corresponding partitioning IA = I0 ∪ I1 ∪ . . . In,
where n = |A| − 1 and the set of interfaces of an agent a0

is represented as I0 = {i0,0, i0,1, . . . , i0,|I0|−1}. The adja-
cency matrix is an m ×m Matrix C, where m = |IA|, and
∀i, j ∈ IA : ci,j = 0, 1 (rows and columns are annotated
with the interface):

i0,0 i0,1 · · · in,|In|


i0,0 ci0,0,i0,0 ci0,0,i0,1 · · · ci0,0,in,|In|

i0,1 ci0,1,i0,0 ci0,1,i0,1 · · · ci0,1,in,|In|
...

...
...

. . .
...

in,|In| cin,|In|,i0,0 cin,|In|,i0,0 · · · cin,|In|,in,|In|

Checking connectivity means search for a valid assign-
ment for the adjacency matrix C, while the following con-
straints hold for this symmetric matrix, where cp,q = cq,p,
p, q ∈ IA:

∀ak ∈ A, p, q ∈ Ik : cp,q = 0 (1)

∀ak ∈ A, p ∈ Ik :
∑
q∈IA

cp,q ≤ 1 (2)

∀ak, al ∈ A :
∑
p∈Ik

∑
q∈Il

cp,q ≤ 1 (3)

Constraint 1 defines that no self links are allowed for an
atomic agent, while Constraint 2 restricts each interface to
be part of maximum one link only. Finally, Constraint 3 en-
forces Assumption 3.2, so that two atomic agents have to be
connected by one link.

The assignment problem is solved using constraint-based
programming and implemented using Generic constraint de-
velopment environment (Gecode) (Schulte and Tack 2012),
where the matrix entries represent the constraint-satisfaction
problem (CSP) variables, each with the domain Dc =
{0, 1}. Since a single agent might have multiple interfaces of
the same type, the corresponding column assignments in the
adjacency matrix are interchangeable, and create redundant
solutions. We use symmetry breaking to reduce the number
of redundant solutions, and to further speed the assignment
process up, variable assignments are done in order of the
least constrained agents, i.e.

a∗ = argmin
ak∈A

1

|Ik|
∑
q∈IA

∑
p∈Ik

c∗p,q (4)

, where

c∗p,q =

{
1 if cp,q is already assigned
0 otherwise

In practice, we will also add a small fractional random bias
which serves as tie breaker when between variables with
equally constrained agents.

Figure 2: A feasible link structure for a composite agent
after solving the assignment problem. Edges are annotated
with the interface corresponding to the source vertex. Agent
models and interfaces are related to the reference system de-
scribed in (Roehr, Cordes, and Kirchner 2014).

Figure 2 shows the result of a successful assignment pro-
cedure, for a set of seven agents, where the agent Sherpa
comprises four male and two female interfaces, Payload one
of each, CoyoteIII two male and BaseCamp five male.

Suitable agents
An atomic agent is associated with a set of resources, being
either physical components or virtual ones such as capabili-
ties and functionalities it can offer; the same holds for com-
posite agents. Additionally, virtual resources can depend
upon other resources, leading to a hierarchical dependency
structure. In order to resolve the functional requirements of
the mission specification to actual suitable agent type which
support the requirements, the organization model provides
a mapping function: µ : PF → Pθ(A), where PF repre-
sents the powerset of all functionalities, and Pθ(Â) denotes
the powerset of all general agent types. The function µ thus
maps a set of functions to a set of general agent types which
support this set of functions and forms feasible agents. The
organization model encodes functionality based on resource
availability, where resources can be physical devices and
capabilities belonging to an agent. Thus, the organization
model allows to infer functionality from a given agent type
and its associated resource structure: µ−1 : Pθ(Â) → PF .
Thereby, the organization allows to map from agents to func-
tionalities and back. An additional generalization can be
achieved, when the mapping does not only account for a set
of functionalities, but a set of arbitrary resource types which
can be associated with a general agent. Currently, however,
we have restricted the mapping to functionality.

Each agent type is associated with a maximum cardinal-
ity for a resource type, which reflects its initial and original
state. Note, that setting the maximum cardinality still allows
to lower the bound, in contrast to defining the exact cardi-
nality. Therefore, the current modeling approach is prepared
to consider resource failure or removal in future extensions.

Support is defined for an agent type and a single resource
concept c as follows (cf. Roehr and Kirchner (Roehr and
Kirchner 2016)):

support(â, c, f) =
cardmax(c, â)

cardmin(c, f)
(5)

, where cardmin and cardmax return the minimum and
maximum required cardinality of resource instances. Ac-
cordingly, support of a function f with respect to a resource



class c can be categorized as follows:

support(â, c, f) =


0 no support
≥ 1 full support
> 0 and < 1 partial support

(6)

Since composite agents might comprise a high level of
redundancy, the introduction of a saturation bound shall re-
duce the number of agents which have to be considered
when a given set of functionalities is demanded. We define
the functional saturation bound for an atomic agent type â
with respect to functionality f using the inverse of support:

FSB(â, f) = max
c∈C

1

support(â, c, f)
, (7)

where C is a set of resource classes and ∀c ∈ C :
cardmin(c, f) ≥ 1 to account only for relevant resource
classes. If there is no support for a c ∈ C such that
support(â, c, f) then FSB(â, f) = ∞. Similarly, the
bound for a set of functions F is defined as:

FSB(â,F) = max
f∈F

FSB(â, f) (8)

Identifying functionality support for a general agent type
is equivalent to an atomic agent type, but to compute the
maximum resource cardinalities the following holds:

cardmax(c, ĜA) =
∑
â∈ĜA

γ
ĜA

(â)cardmax(c, â) (9)

, where c ∈ C. Minimum resource cardinalities will be com-
puted equivalently using cardmin(c, â).

The number of general agent types that can support some
functionality can be large, but it can be observed that for
a supported set of functionalities a set of minimal general
agent types Gmin exists.
Definition 4.1. A general agent type which supports a given
set of functionalities and whose agent type cardinalities can-
not be further reduced is denoted minimal with respect to
the given set of functionalities.

Hence, a minimal general agent type represents a lower
bound to satisfy functionality requirements with a given
combination of agent types.

5 Mission planning
The primary goal is to provide a valid assignment for the
provided mission specification (cf. Section 3), while fleet
size minimization and total cost minimization are secondary.
The actual planning process is based on several stages in or-
der to generate solutions:
(1) temporal ordering of all timepoints using a temporal

constraint network
(2) upper and lower bounding of agent type cardinality for

each spatio-temporal requirement
(3) generation of agent role timelines according to unifica-

tion constraints and agent type cardinalities
(4) flow optimization to transfer immobile agents with mo-

bile agents
(5) quantification of timepoints, based on transition times

Stage (1) creates a sequence of ordered timepoints, which
is a necessary precondition for all next stages in order to
identify concurrent resource usage and creating a commod-
ity flow network. Stage (2) identifies the minimally required
set of agent roles, and is for this reason a key element for
minimization of the resources in use. Stage (3) takes all mis-
sion constraints into account in order to suggest a feasible
agent role assignment. This assignment is handed toa opti-
mized in stage (4).

Constraint-based programming is involved in the rea-
soning of the organization model, and the planning stages
(1),(2), and (3). Each of these stages involves the definition
of appropriate branching strategies, and symmetry breaking
conditions, and (3) uses of special implemented constraint
propagator. If at any listed stage the search process fails,
backtracking will be performed to the previous stage. The
following sections will describe the details of the individual
stages:

Temporal Ordering of Timepoints To generate valid
timelines and identify resource conflicts the approach re-
quires a fully ordered set of timepoints. The generation of
a fully constrained set of timepoints is based on qualitative
temporal reasoning using point algebra with the set of rela-
tions REL = {>,<,=} (Rina Detcher 2003). Consistency
of the Temporal Constraint Network (TCN) is checked us-
ing a CSP which is defined by a set timepoint variables T =
{t1, t2, . . . , t|T |}, a set D = {D1, D2, . . . , D|T |} to repre-
sent the domain values for each timepoint t ∈ T , and a con-
straint set C with constraints of the form C = 〈tn, reli, tm〉,
where n,m = 1, . . . , |T |, and reli ∈ REL. A constraint
is fulfilled if the relation described by c ∈ C between two
timepoint variables is fulfilled.

The final domain for each variable is restricted to a
singleton: |Di| = 1 and permitted values are Di ⊆
{1, 2, . . . , |T |}. If a full assignment of values can be found,
the TCN is consistent, and the ordering of timepoints cor-
responds to the ordering of the assigned values. The quali-
tative temporal reasoning is sufficient to synchronize tasks,
but only the quantification of time in the last stage of the
planning approach will verify the temporal consistency of a
solution.

Bounding agent type cardinality To perform an upper
and lower bounding of agent type cardinality a matrix based
representation for spatio-temporal requirements and agent
types is used, where xi,j represents the cardinality of agent
type âj ∈ Â and si ∈ STR. The following matrix rep-
resentation with annotated rows and columns illustrates the
meaning of each related CSP variable:

â0 â1 · · · ân


s0 x0,0 x0,1 · · · x0,n

s1 x1,0 x1,1 · · · x1,n

...
...

...
. . .

...
sm xm,0 xm,1 · · · xm,n

(10)

, where n = |Â| − 1, and m = |STR| − 1. Each variable x
has an initial domain of positive integers Dx = {0, 1, . . .}.



Since resource availability is restricted, the general agent
type ĜA which is part of the mission specification defines
an upper bound for all agent type cardinalities, which will
be referred to as ĜAUB for readability.

Spatio-temporal requirements, however, can overlap, i.e.
when they refer to the same location and their time intervals
overlap. For a set of overlapping spatio-temporal require-
ments Ω = {si, . . . , sj}, si, sj ∈ STR the upper bound is
enforced as follows:

∀âj ∈ Â :
∑
si∈Ω

xi,j ≤ γĜAUB
(âj) (11)

The organization model is required to translate the re-
quirements for functionalities into requirements for (suit-
able) general agent types, and apply the functional satu-
ration bound. Lower bounds for each spatio-temporal re-
quirement result from the combination of demanded func-
tionalities and the given minimum agent type cardinalities.
This lower bound represents a set of minimal general agents
which is translated into the spatio-temporal requirement’s
CSP variable domain. This domain is considered in the CSP
by using extensional constraints for the assignment of model
cardinalities, thus restricting model combination to minimal
general agents. The extensional constraints enforce an ex-
act assignment, but any full assignment of model cardinali-
ties is only a lower bound for the subsequent agent role as-
signment stage. If no assignment can be found, too few re-
sources are available to fulfil the mission requirements; the
planning continues with another assignment of the temporal
constraint network if possible or fails otherwise.

Agent roles Subsequent to the CSP branching on bounded
agent type cardinalities, a candidate assignment of agent
roles to spatio-temporal constraints can be computed using
a set of integer variables yi,k,j , for si ∈ STR, âk ∈ Â, and
0 ≤ j ≤ γ

ĜAUB
(âk), which have the domain D = {0, 1}:

râ00 · · · râk0 · · · rânl


s0 y0,0,0 · · · y0,k,0 · · · y0,n,l

s1 y1,0,0 · · · y1,k,0 · · · y1,n,l

...
...

. . . . . . . . .
...

sm ym,0,0 · · · ym,k,0 · · · ym,n,l

(12)

, where l = γ
ĜAUB

(ân) − 1, m = |STR| − 1, and n =

|Â| − 1.
Additional constraints are applied to guarantee unary

agent role usage for time-overlapping constraints, and the
general mission constraints described in Section 3 can di-
rectly be translated into low level CSP constraints, e.g., such
as equality constraints minEqual, maxEqual as well as dis-
tinction constraints. Since agent roles of the same agent type
are interchangeable symmetry breaking is applied to reduce
the number of redundant solutions. While constraint propa-
gation will reduce the corresponding domain and will lead to
value assignment, full assignment of variables will only be
performed for agent roles that (a) have an assignment apart
from the single starting location, and (b) are mobile. To the

first kind of agent roles we will also refer to as active agent
roles. This partial assignment allows to extract full timelines
for active mobile agents and partial timelines for active im-
mobile agents. Both form the basis for a multi-commodity
flow problem which is solved using integer linear program-
ming.

Timeline Generation Variable assignment for a single
agent role variable assignment have to fulfill another impor-
tant property: they have form a path in a temporal-expanded
network. Ford and Fulkerson (Ford and Fulkerson 1963)
have shown that networks can represent flow over time, and
we similarly rely on what we call a temporal-expanded net-
work to compute a flow-based representation for the mis-
sion planning problem. The temporal-expanded network has
a bound on the number of edges by allowing only edges be-
tween vertices which are related to neighbouring timepoints
and point forward in time:

Definition 5.1. A time-expanded network for a set of time-
points T and a set of locations L is a graph G = (V,E)
with the following properties: Each vertex in V corresponds
to a unique location timepoint tuple vl,t = (l, t), where
l ∈ L, and t ∈ T . The set of edges is restricted: e ∈
E =⇒ e = (vtn,li , vtn+1,lj ), where n = 0, . . . , |T | − 1
and i, j = 1, . . . , |L|. Without loss of generality t0 ≤ t1 ≤
· · · ≤ t|T |−1.

A custom (path) propagator has been implemented to ex-
ploit the structure of the network and enforce a constrained
path in the network. This leads to a faster assignment pro-
cess of agent role variables.

Multi-commodity flow When the role assignment process
is completed (fully for the mobile agents, and partially for
the immobile ones), it is straightforward to translate the
agent role timelines into a multi-commodity min-cost flow
problem (Ahuja, Magnanti, and Orlin 1993): mobile agents
represent transport providers, while immobile agents will
be treated as individual commodities. Thus, edges in the
network are either ’local’ connections since they refer to
the same location, or they are part of mobile agent routes.
While we assume that local connections have infinite ca-
pacity, edges created as result of a mobile agent transition
have an upper capacity bound defined by the transport ca-
pacity of the corresponding mobile agent. All available mo-
bile agents span a flow network over which commodities, or
here immobile agents, can be routed to their target destina-
tions. But agents are not restricted to a single target des-
tination, so that requirements partially define a route for
each agent. Therefore, the flow network represents all im-
mobile agent requirements by minimum trans-flow require-
ments. Although bundling all agent types into one commod-
ity would lead to a compact representation, route require-
ments for individual agents could not be set properly. Hence,
each immobile agent role corresponds to a commodity, and
role usage requirement are translated in to minimum transi-
tion requirements as already mentioned.

Mobile and immobile agent routes are transformed into
a multi-commodity min-cost flow problem with unit com-



modity cost (Ahuja, Magnanti, and Orlin 1993):

min
∑
k,m

xkm

s.t.
∑

em∈An

xkm −
∑

em∈Bn

xkm =


S+
k if n = sk
−S−k if n = tk , ∀ n, k
0 otherwise

xkm ≥ lkm ∧ xkm ≤ ukm
, where

G = (V,E)

K = number of commodities, k = {1, . . . ,K}
m = {1, . . . ,M},M = |E|
em = edge between node i and node j, i.e. (i,j)

xkm = flow for commodity k in arc em
ckm = unit cost for commodity k in arc em

ukm, l
k
m = upper/lower bound for commodity k flow

through edge m
sk, tk = source/target of commodity k, sk ∈ V

S+
k , S

−
k = supply/demand of sk ∈ V
Bn = set of incoming edges of node n
An = set of outgoing edges of node n

To solve the network flow problem, the problem is first
translated into a standard representation (CPLEX LP) so
that different LP solvers can be used to solve the opti-
mization problem (here: SCIP (Achterberg et al. 2008) and
GLPK (Free Software Foundation 2015)). Any feasible and
optimal solution of the network flow problem is also a fea-
sible, but not necessarily an optimal solution for the mission
assignment problem.

Quantification of time A full solution still requires the
quantification of temporal intervals: the qualified temporal
network is therefore converted into a quantitative simple
temporal network where the transitions between locations
(and stqes) are based on the time required for the mobile sys-
tems to perform the location transitions and to form compos-
ite agents. Any min and max duration constraints will also
apply at this planning stage.

Search & Solution repair
The previously described constraints lead to the generation
of role timelines, and the CSP framework Gecode (Schulte
and Tack 2012) has been used for the implementation. All
role timelines are not only checked for feasibility via the
multi-commodity min-cost flow optimization, but at the
same time locally optimized. Still, finding a feasible solu-
tion for a highly restricted set of resources can be a sig-
nificant challenge. Several strategies can be considering for
search, and our initial approach interprets lower agent type
cardinality bounds as exact bounds - with the intention to
keep the fleet size minimal and enlarge only when nec-
essary. Hence, in the case when no optimal solution can

be found, the infeasible (LP) solution is analysed to iden-
tify open flaws, i.e. unfulfilled minimum commodity trans-
flow requirements. Upon identification of all flaws, a repair
heuristic can be applied which injects additional transport
provider requirements, thereby triggering either the change
of existing mobile agent routes, or an increase of the lower
agent type cardinality. The min-property constraint is used
to augment the mission and restart the search after the local
repair. For highly constrained missions, the repair process
can reduce the number of flaws, but is slow at finding fea-
sible solutions, hence showing that the heuristic is currently
insufficient for complex setups.

An alternative is offered by the relaxation of cardinality
bounds. In order to speed up finding an initial feasible solu-
tion, it is beneficial not to interpret the lower agent type car-
dinalities as exact bounds. Allowing an additional set of mo-
bile systems (still within the number of the available ones)
can reduce the time to find a feasible solution, but leads to
higher redundancies and therefore less efficient solutions,
since more agents will be required.

Figure 3 shows a computed feasible solution. The general
agents available for the mission are 3 Sherpa, 2 CREX, 3
Coyote II, 16 Payload, and 5 BaseCamp, where some agent
interfaces are listed in the upper left corner of the figure. The
assignment at the location lander shows, that only a subset
of atomic agent is required for the solution. Fulfilled atomic
agent requirements are highlighted as green squares, while
the presence of systems without requirements is shown in
green. These requirements, however, only represent one fea-
sible set of atomic agent requirements which has been in-
ferred from required functionalities. This solution has been
computed within few seconds but only for a relaxed cardi-
nality bound with two additional mobile agent roles (per mo-
bile agent type).

Mission solution & cost function
The overall state of the agent organization, i.e. current con-
nection state of atomic and composite agents is reflected by
the coalition structure. In order to cost factor the dynamics in
an agent organization two related concepts have to be used:
policies and heuristics. Policies are required to define rules
for selection and attribution. For example in the case of a
transport multiple mobile robot may be available to perform
this transport. To decide which one to take, a transport pol-
icy has been introduced, which chooses the agent with the
largest transport capacity. For attribution energy consump-
tion in a composite agent serves as main example. Since
multiple power sources might exist is such system, a con-
sumption policy has to distribute the consumption to all en-
ergy providers. Here, for the default policy each provider
takes a share relative to its contribution to the overall energy
capacity of the composite agent. Heuristics serve to interpo-
late a organizational state and estimate final mission costs: a
duration heuristic for moving between locations relies on the
information about the distance and the nominal speed of the
transporting agent. Energy cost are depending upon the du-
ration heuristic by relating duration to the power consump-
tion of a composite system. Any reconfiguration changes
this coalition structure, but requires a transition time, so that



Figure 3: Example of a feasible solution for a full mission with locations = {lander,b1,b2,b4,b6}, timepoints =
{t0,t1,. . . ,t10,t14}. Fillbars indicate the consumed capacity of mobile agents. Color-coded boxes represent unique agent roles
(only for better visualization limited to 16 per agent type): green = fulfilled requirement, gray = presence without a requirement.

ρ(CSAi , CS
A
j ) defines the time to transition from one coali-

tion structure CSAi to another CSAj . This cost heuristic as-
sumes the same location of all agents in A.

The objectives of the planner is to find a solution that bal-
ances the overall energy consumed with the level of safety:
distance d(a,Ms) travelled distance of an agent a in mis-

sionMs

operation time op(a,Ms) = d(a,Ms)/vnom(a) duration
of operation of an agent a

energy E(a,M), where E(a,Ms) = op(a,Ms) · pw(â)
overall consumed energy by agent a to perform Ms;
E(M) =

∑
a∈A overall consumed energy per mission

safety SAF (Ms) = mins∈STR saf(s) represents the
minimal safety level (here: redundancy) of the mission,
where saf(s) defines the safety metric associated with
an stqe s based on the available (general) agent and with
respect to the required set of resources; currently a redun-
dancy based model is used to estimate the probability of
survival based on an agent’s set of component required to
provide the functionalities in F (cf. (Roehr and Kirchner

2016) for details), such that 0 ≤ saf(s) ≤ 1.
fulfillment SAT (M) = 1

|STR|
∑
s∈STR sat(s) represents

the ratio of fulfilled requirements, where

sat(s) =

{
0 , unfulfilled
1 , fulfilled

This following cost function reflects a balancing of three
general mission aspects: efficiency through the energy cost
function, efficacy through checking the level of fulfillment,
and safety as redundancy dependant survival metric; for bal-
ancing the parameters α, β and gamma can be used:

cost(Ms) = αE(Ms) + βSAT (Ms) + γSAF (Ms)

Figure 3 shows an example of a feasible solution. Each
such solution can be translated into action plans for individ-
ual agent roles. Each vertex of the solution network serves
as synchronization point and assumes reconfiguration opera-
tion to account for necessary coalition structure changes; the
reconfiguration cost are annotated accordingly, along with



the safety metric. Overall cost for the provided solution net-
work are computed by constructing a simple temporal con-
straint network (Dechter 2003) where the bounds are defined
by the transition times of the mobile agents.

6 Conclusion & Future Work
This paper presents the continued work for developing a
planning system for a reconfigurable multi-robot system.
The planner relies on constraint-based programming to spec-
ify and solve missions involving reconfigurable multi-robot
systems, which is combined with multi-commodity flow op-
timization as local search. Furthermore, it suggests a multi-
objective optimization target involving efficacy, efficiency
and safety. The approach presented in this paper does not
only result in a planning system for reconfigurable multi-
robot system, but also in a tool which allows to analyse
the effects of using reconfigurable multi-robot systems in
robotics missions. Future work will firstly focus on intro-
ducing better plan repair heuristics, and the extended use of
meta-heuristic search strategies to improve the performance
and scalability of the embedded local search approach. Sec-
ondly, a resource augmentation stage will be added in or-
der to use previously unused resources to raise the level of
safety.
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