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ABSTRACT

We propose a novel loss function for the training of deep
Convolutional Neural Networks (CNNs) focusing on land use
and land cover classification in remote sensed data. In satel-
lite imagery, object classes are often highly imbalanced lead-
ing to poor pixel-wise classification results when using stan-
dard training methods only. In this work, we introduce a
loss function which leverages the per class uncertainty of the
model during training together with median frequency bal-
ancing of the class pixels. We evaluate our result on aerial
images of the state-of-the-art dataset Vaihingen. We obtain a
significant improvement of the F1-Score and pixel accuracy
against the standard cross entropy loss on the small car class.
The overall F1-Score using a single CNN achieves 89.35%
resulting in an error reduction of 21.22% against the baseline.

Index Terms— Deep Learning, Semantic Segmenta-
tion, Class Uncertainty Weighting, Satellite Imagery, High-
Resolution Imagery

1. INTRODUCTION

The increasing number of satellites constantly sensing our
planet and the corresponding availability of remote sensed
imagery raises a set of new challenges for the automated anal-
ysis of this data source at a large scale. Up-to date information
of our earth’s surface with detailed land use and land cover
classes has potential to change how environmental monitor-
ing, agriculture, forestry, emergency response and urban plan-
ning will be done in the future.

In order to support the research in the extraction of fea-
tures in remote sensed imagery, dedicated datasets have been
developed addressing specific use cases. For example, the
Multimedia Satellite Task 2017 [2] aims to help relief agen-
cies during flooding events by identifying areas that are af-
fected hardest by such an event. Other large-scale datasets
such as the EuroSAT [3] focus on a global land use and land
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Fig. 1. One sample patch of the same location in different
representations: (a) an IRRG-image, (b) a normalized Depth
image and (c) the Ground Truth. It can be seen that the object
classes in this scene are highly imbalanced. The amount of
pixels corresponding to the car class (shown in red color in
(c)) is significantly lower compared to pixels related to build-
ing or vegetation classes (blue and green color in (c)).

cover classification by using publicly available satellite data
from Sentinel 2. The ISPRS Vaihingen 2D semantic labeling
contest dataset [1], focuses on the semantic segmentation of
urban land use classes on very high resolution airborne data
to support urban development.

In this paper, we rely on deep convolutional neural net-
works (CNNs) and the ISPRS Vaihingen 2D semantic dataset.
CNNs are currently the major approach for semantic segmen-
tation on RGB images [4, 5] and on satellite/aerial imagery
of the remote sensing domain [6, 7, 8]. Their supremacy
against traditional approaches [9] is also reflected in the IS-
PRS Vaihingen challenge where CNN achieve the best per-
forming results. However, one major challenge when train-
ing CNNs for semantic segmentation on remote sensed im-
agery is the presence of a high class imbalance. This can be
seen in Fig 1, where only a few pixels are assigned to the car
class and a high number of pixels are assigned to vegetation
class. Training with a standard cross entropy loss yields to
poor classification results of small classes, since the gradi-
ents of the minority class are computed only for a few pix-
els. A major approach to overcome this problem of small
classes, is the usage of a weighted cross-entropy loss. The
idea is to assign small classes a higher cost value in case of
miss-classifications compared to bigger classes. The work by



Kampffmeyer [7] showed that by weighting the cross entropy
loss with median frequency balancing (MFB) [10], the seg-
mentation accuracy for small classes in urban remote sensing
can be effectively improved. While such a weighting yields to
more balanced classification result by boosting small classes,
larger classes tend to not improve after a certain threshold.

In this paper, we analyze the potential of using a novel loss
function to leverage on the one hand side a median frequency
balanced weighted loss and on the other hand the uncertainty
of the network classes with respect to particular classes. The
contributions of this paper can be summarized as follows:

• We propose a new loss for high resolution satellite
images with imbalanced classes. The loss takes the
frequency of class pixels and class uncertainty of the
model into account.

• Results on the Vaihingen dataset [1] show an improve-
ment of about 4 percentage points on the F1-Score
against the standard cross entropy loss, which corre-
sponds to error reduction of 21.22% percent.

2. APPROACH

In this section, we describe the details of the network archi-
tecture and the proposed loss function.

2.1. Fully Convolutional Network Architecture

Our method for semantic segmentation of land use and land
cover classes in satellite imagery, relies on a Fully Convo-
lutional Network (FCN). We adopt the originally proposed
FCN [11], which is based on the VGG16 network [12], with
the recently introduced state-of-the-art architecture ResNet50
[13]. This modification is motivated by two major reasons:
(1) ResNet50 introduces residual connections into the archi-
tecture which allows the training of more layers compared
to VGG16. Thereby, more complex features can be learned,
resulting in a more accurate model with respect to image clas-
sification performance. (2) At the same time, less parameters
are used compared to VGG16, yielding to a faster model dur-
ing training and inference time.

We obtain pixel-wise class predictions from the network
by applying a 1x1 convolution to the feature maps after the
last bottleneck layer (res4b22) and up-sampling the predic-
tions via bilinear interpolation to the output size. We ad-
ditionally augment the resulting FCN with a pyramid pool-
ing module [4]. Pyramid pooling modules are an attempt to
extract global contextual information from feature maps and
have shown to be an important component for improving the
accuracy in semantic segmentation tasks[4]. Motivated by re-
cent success of these multi-scale features [14, 4], we attach
a pyramid pooling module to the last bottleneck layer of the
network. The final network is trained end-to-end using back-
propagation.

2.2. Adaptive Uncertainty Weighted Class Loss

The aim of our approach is to incorporate (1) the imbalanced
frequency of pixels per class as well as (2) the uncertainty of
the model with respect to the classes into a single loss func-
tion. Both objectives can be expressed as multi task problem,
in which the target loss is defined as follows:

Ltotal(x; θ) = Lc(x; θ) + Lu(x; θ) (1)

where Li the corresponds to the task loss functions to be min-
imized with respect to the network parameters θ.

The first term Lc(x; θ) is used to cope with the imbal-
anced classes in the dataset. We use a weighted cross-entropy
loss with a medium frequency balancing on the classes in the
set of classes C as follows:

Lc(x, θ) =

C∑
c=1

−CclogP (Cc = 1|x, θ, σt) ∗ wc (2)

Each class c is weighted by wc the ratio of the median class
frequency and the class frequency fc (computed over the
training dataset) as follows:

wc =
median(fc|c ∈ C)

fc
(3)

The weighting gives classes with a few pixels higher weights
and classes with many pixels smaller weights.

The second term Lu(x; θ) is used to weight classes ac-
cording to the per-class uncertainty of the model. The loss
has the same form as the weighted cross entropy loss defined
in Eq. 2. Instead of using the median frequency balancing as
weighting for wc, the class uncertainty of the model is used.
We compute the per class uncertainties of the model, from
uncertainty maps using Monte Carlo dropout [15] for a given
pixel classification. We therefore sample ten Monte Carlo
samples from the network, calculate the variance over the
softmax output and aggregated over all pixels per class. Each
resulting class uncertainty is normalized by the uncertainty
of the remaining classes. The loss adaptively assigns classes
with an relative high uncertainty an higher weight.

3. EXPERIMENTS AND RESULTS

3.1. Dataset and Metrics

Dataset. We evaluate our proposed approach on the ISPRS
Vaihingen 2D semantic labeling contest dataset [1]. The
dataset consists of airborne images of Vaihingen, a town in
Germany, containing high resolution true ortho photo (TOP)
tiles in a ground sampling distance of 9 cm. Additionally, the
dataset comes with Digital Surface Models (DSMs) of Vai-
hingen in the same spatial resolution. Normalized DSMs are
provided by Gerke [16] to handle effects of varying ground



Table 1. Performance of the different models on the validation set. The F1 scores and accuracies are shown as percentages.
Imp. Surface Building Low Veg. Tree Car Overall

Method F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc.
FCN 90.69 90.16 95.15 95.46 76.77 74.53 87.64 90.31 82.15 73.98 86.48 84.89

FCN + MFB 90.96 89.11 95.25 95.66 77.58 76.32 88.24 90.89 89.15 88.65 88.24 88.13
FCN + MFB + UWC 91.95 90.60 95.59 96.55 79.58 78.59 88.77 90.26 90.88 87.79 89.35 88.76

heights. The pixels in the dataset are labeled with the follow-
ing six land use and land cover classes: Impervious Surfaces,
Building, Low Vegetation, Tree, Car and Background. Ground
truth labels are publicly available for 16 of the 33 tiles in the
dataset, the remaining ground truth is used for the private test
set. Following recent methods [7], we split the 16 tiles into
a training set with the 11 images (areas: 1, 3, 5, 7, 13, 17,
21, 23, 26, 32, 37) and the validation set having the 5 images
(areas: 11, 15, 28, 30, 34).

Metrics. We follow the evaluation procedure defined by
the ISPRS [17] to report our results on the contest. The seg-
mentation accuracy is measured by the F1-Score F1 = (2 ∗
Precision ∗Recall/(Precision+Recall)) and the overall
accuracy, defined by the percentage of correctly labeled pix-
els. In order to cope with labeling errors and noise in the la-
bels, class boundaries were eroded with a disk of radius three
and annotated with the background class.

3.2. Network Training

Early Fusion. Since the Vaihingen dataset includes multi-
modal information of the optical and depth domain, we per-
form an early fusion approach. Thereby, we stack the three
IR-R-G channels of the optical domain together with the two
grayscale channels of the DSM and the normalized DSM im-
ages. The resulting five dimensional tensor is then passed to
the network with the architecture described in Section 2.1.

Training Setup. We initialize all networks in this paper
with a ResNet50 model pretrained on ImageNet [18]. We av-
erage the weights of the first convolution over the channels
and extend the weights in the channel dimension to five to
cope with two additional dimensions for the depth informa-
tion not being present in the pre-trained RGB model. The
non RGB channels are initialized with the average across the
RGB channels. All networks in this paper are trained for 100
epochs with a batch size of 8. We extract overlapping im-
age patches (with a surface overlap of 50%) of size 256x256
pixels and apply random flipping in horizontal and vertical
dimension as data augmentation. We use Stochastic Gradi-
ent Descent with a momentum of 0.9, weight decay of 0.0005
and learning rate of 0.01 to optimize the network parameters.
Inspired by [4], we use the poly learning rate policy, in which
the learning rate determined by (1 − iter

max iter )
power. We set

the parameter power to 0.9. For a fair comparison, all net-
works are trained with the same experimental setup.

3.3. Experimental Results

The overall performance of the segmentation network trained
with the proposed loss can be seen in Table 1 (row three).
This network achieves an overall F1-Score of 89.36% and
class accuracy of 88.76% on the Vaihingen validation set. We
compare the results against the baseline, which uses the same
network and experimental setup but was trained with the stan-
dard cross entropy loss only. Compared to this baseline, train-
ing with the novel loss improves the overall accuracy by 3.87
percentage points and improves the F1-Score 2.88 percent-

(a) IRRB Image (b) Ground Truth

(c) Prediction FCN (MFB+UWC) (d) Prediction FCN

Fig. 2. Performance of the different models on single image
tile of the validation set of the ISPRS Vaihingen dataset.



age points. For the F1-Score, this results in a reduction of
the classification error by 21.22%. An major improvement
against the baseline can be recognized in the car class which
gets improved from 82.15% to 90.88% on the F1-Score (row
one against row three).

As second baseline, we trained the fully connected net-
work using median frequency balancing weighted cross en-
tropy loss. The performance against the first baseline gets
improved to an overall F1-Score of 88.24% and to 88.13%
for the overall pixel accuracy. However, compared to our ap-
proach, the second baseline achieves less accurate results as
shown in Table 1 (row two against row three). While the F1-
Score for the car class gets improved by about one percent,
also the big classes with higher uncertainty such as Low Veg-
etation and Impervious Surface can still be improved.

4. CONCLUSION

In this paper, we introduced a novel loss function for seg-
mentation networks relying on high resolution satellite im-
agery. The proposed loss takes imbalanced pixels of small
classes into account as well as the per class uncertainty of the
model. Compared to standard cross entropy loss the error of
the F1-Score is reduced by 21.22% and compared to median
frequency balancing by 9.43%. In the future, we addition-
ally plan to weight the two losses by an scalar λi to model
the importance of each task on the combined loss Ltotal and
let the network learn an adaptive task weight as done in the
multi-task scenario [19].
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