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Abstract. Fully automatic tracking of articulated motion in real-time with monoc-
ular RGB camera is a challenging problem which is essential for many virtual
reality (VR) applications. In this paper, we propose a novel temporally stable
solution for this problem which can be directly employed in VR practical ap-
plications. Our algorithm automatically estimates the number of persons in the
scene, generates their corresponding person specific 3D skeletons, and estimates
their initial 3D locations. For every frame, it fits each 3D skeleton to the corre-
sponding 2D body-parts locations which are estimated with one of the existing
CNN-based 2D pose estimation methods. The 3D pose of every person is esti-
mated by maximizing an objective function that combines a skeleton fitting term
with motion and pose priors. Our algorithm detects persons who enter or leave
the scene, and dynamically generates or deletes their 3D skeletons. This makes
our algorithm the first monocular RGB method usable in real-time applications
such as dynamically including multiple persons in a virtual environment using the
camera of the VR-headset. We show that our algorithm is applicable for tracking
multiple persons in outdoor scenes, community videos and low quality videos
captured with mobile-phone cameras.

Keywords: Human motion capture · Convolutional neural network · anthropo-
metric data.

1 Introduction

Human motion capture has applications in many fields such as VR, augmented reality
(AR), 3D character animation (i.e. for movies and games), human-computer interaction,
and sports. The last decade have witnessed significant progress in marker-less human
motion capture approaches which work directly on real-world video streams [39, 44,
49]. Although, many marker-less algorithms have achieved high accuracy under chal-
lenging conditions, most commercial VR systems still use marker-based algorithms that
require to place markers on the human body. One of the main reasons is that marker-less
algorithms require several manual initialization steps (e.g. 3D human model generation
and initial pose estimation) which are cumbersome, require a lot of experience and time
consuming.
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Fig. 1: Our algorithm recovers 3D skeletons poses in real-time. It captures complex
motions of 8 persons in a community video (left), 3 persons in a video from the Mar-
coni [19] datasets (middle) and 3 persons in a video captured with our mobile-phone
RGB camera (right). Top row shows overlaid 2D skeletons and bottom row shows 3D
visualizations of the captured skeletons.

Monocular RGB cameras are very common in many VR-headsets, laptops, and
smartphones. Thus, developing a fully automatic real-time multi-person marker-less
human motion capture algorithm that works with such monocular cameras is essential
for many VR applications. An example of these applications is to include and animate
multiple 3D characters in a VR environment using the camera of a VR-headset. Further-
more, this algorithm allows to interface PCs, laptops, or smartphones with their cameras
(e.g. play games). However, developing such algorithm is challenging and requires 1)
automatic estimation of number of persons in the scene 2) automatic generation of their
3D skeletons 3) automatic estimation of their initial 3D location 4) dynamical genera-
tion or deletion of 3D skeletons for persons entering or leaving the scene; respectively
5) real-time multi-person fitting energy function.

Most of marker-less approaches estimate the articulated joint angles of moving sub-
jects from multi-view video recordings [51, 19, 21, 22]. These algorithms require man-
ual estimation of persons number, their 3D models, and their initial poses. Moreover,
they fail to reliably track articulated motion in general scenes with single RGB cam-
era. While many recent algorithms have managed to estimate accurate human motion
from monocular depth cameras [5, 57, 16], only few algorithms work accurately with
monocular RGB cameras [38, 58, 37]. Although some of these algorithms achieve better
accuracy than our algorithm, they do not succeed under our challenging multi-person
tracking conditions. For instance, [38] does not succeed with multi-person and assumes
an initial human pose to be given. Moreover, it’s skeleton initialization requires given
2D body parts detections from several frames and height of the person. In addition to
these limitations, other monocular algorithms such as [58, 37] are offline and exhibits
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jitter over time due to per frame estimation. To the best of our knowledge, our algo-
rithm is the first that performs automatic personalized skeleton generation and initial
pose localization of varying number of persons in real-time. Moreover, it reconstructs
the motion of multi-person in real-time using a single off-the-shelf RGB camera.

Our algorithm allows to overcome the limitations of RGB-D cameras which fail in
general outdoor scenes due to sunlight interference. These cameras have lower resolu-
tion, limited range, higher power consumption, and are not widely available as RGB
cameras. Our algorithm is able to track multiple persons moving in front of cluttered
and non-static backgrounds with moving low quality camera which suffers from high
distortion. It also succeeds in case of strong illumination changes. It works with any
mobile-phone cameras, webcams, and community videos (e.g. YouTube videos). Our
novel algorithmic contributions that enable this, are:

1. Real-time, simple and automatic multi-person human 3D skeletons generation; see
Section 4.1.

2. Automatic initial 3D location estimation of each person in the scene; see Section
4.2.

3. Automatic detection of the change in number of persons and generating or deleting
the corresponding 3D skeletons on the fly while tracking; see Section 4.3.

4. Novel algorithm which tracks full articulated joint angles of multiple persons at
high accuracy and temporal stability in real-time, given 2D body-part locations;
see Section 4.3.

The estimated multi-person motions can be used in many fields such as VR, AR,
motion-driven 3D game character control, and human computer interaction. Further-
more, our algorithm can be optimized for smartphones and driving assistance applica-
tions. In our experiments, we show that our algorithm can capture even complex and
fast body motion of multi-person in real-time; see Figure 1. We managed to capture
complex motions of multiple persons in outdoor scenes with a moving mobile phone
camera, a spherical camera in a car, and a webcam in an office.

2 Related Work

Video-based human motion capture has seen great advances in recent years. We refer
the reader to the surveys [39, 44, 49] for an overview. We focus the discussion in this
section on two categories: methods based on multi-view input and methods that rely on
a monocular RGB camera.

Multi-view: Most multi-view marker-less motion capture setups employ a human
3D model whose pose parameters are computed by optimizing an overlap measure be-
tween the projected 3D model and the input images. They attain high accuracy by track-
ing the human model over the image sequence with offline computation [10, 9, 50]. In
[24], the pose is estimated from silhouette and color information. The approaches pre-
sented in [7, 30, 33] use training data to learn a motion model or a mapping from im-
age features to the 3D pose. Tracking without silhouette information is also possible
by combining model-guided segmentation and pose estimation. Earlier methods, such
as [43], attempted to capture human skeletal motion from stereo footage, but did not
achieve the same accuracy as methods using dense camera setups.
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Amin et al. [3] propose a multi-view pictorial structures model that incorporates
evidence across multiple viewpoints to allow robust 3D pose estimation. Belagiannis
et al. [6] extend [3] for 3D pose estimation of multiple humans. However, a common
problem with these approaches is jitter due to missing temporal information at each
time step. The approach by [51] introduced an analytic formulation for calculating the
model-to-image similarity based on a Sums-of-Gaussians model. Other works extend
multi-view motion capture approaches towards tracking with moving or unsynchro-
nized cameras [25, 48, 21, 22]. These methods need separate initialization (e.g. using
[8, 46] at the beginning of each sequence and after loss of track in local minima of
their non-convex fitting functions). Robustness can be increased with a combination of
generative and discriminative estimation [19, 45]. An accurate manually initialized hu-
man 3D model is essential for these methods. We propose an approach for automatic
multiple skeletons generation which avoids using human model projection to speed up
estimation. This allows to utilize generative tracking components and ensure temporal
stability.

Monocular RGB: Depth-based motion capture methods [57, 16] have achieved ro-
bust real-time results. However, in this section, we focus on RGB-based methods. These
methods can be divided into generative and discriminative methods. The generative mo-
tion capture problem is fundamentally under-constrained in case of monocular input.
Thus, it is only successful for motion capture from short clips and when combined with
strong motion priors [54]. Manual annotation and correction of frames is suitable for
some applications such as actor reshaping in movies [28] and garment replacement in
videos [47]. These generative algorithms preclude live applications because of manual
interaction and expensive optimization.

Recently, many monocular discriminative human pose estimation methods have
been introduced. Some of them discriminatively learned mapping from the image di-
rectly to human joint locations [1, 29, 27]. CNN based 2D and 3D human pose estima-
tion approaches achieve state-of-the-art accuracy. For instance, [34, 36, 52, 17] estimate
human 3D pose directly from monocular image or video. Chen et al. [15] automatically
synthesize training images with ground truth pose annotations and train CNNs with
these synthetic images for 3D pose estimation.

Other approaches estimate 3D human pose from 2D body parts locations in a monoc-
ular image [31, 2, 55, 32, 23]. Many of these works have been realized by assuming
manually labeled 2D body part locations. Recently, many CNN-based 2D pose estima-
tion methods were proposed [13, 26, 11, 56, 53, 14]. All these methods provide 2D body
parts locations which can be used for 3D human pose estimation. For example, Cao et
al. [13] managed to efficiently detect the 2D poses of multiple persons in an image using
a nonparametric representation, which allows to learn associations between body parts
of each individual in the image. Bogo et al. [8] used 2D body parts locations detected
by [42] to automatically estimate the 3D pose and shape of the human body from a
single unconstrained image. However, this method is not real-time and works for single
person only.

Most closely related to the present paper are approaches for real-time recovery of
3D human pose with monocular RGB camera. Only a few methods target this problem
for temporally stable results which is directly usable in practical applications. The top
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Fig. 2: Overview. We generate multiple person-specific 3D skeletons based on anthro-
pometric data, and estimate the initial location of each person in an initialization phase
(bottom, Section 4.1). In the tracking phase, we estimate 2D body-parts positions from
the input video streams. These 2D positions are used to estimate global 3D poses by
skeleton fitting (top, Section 4.3). The Dynamic Scene Update step generates or deletes
3D skeletons for persons who enter or leave the scene.

performing single RGB 3D pose estimation methods are based on CNNs [38, 58, 41,
37, 35]. Mehta et al. [37] use a 100-layer CNN architecture to predict 2D and 3D joint
positions simultaneously. However, [37] is unsuitable for real-time execution due to
the additional preprocessing steps such as bounding box extraction. Mehta et al. [38]
propose a 3D pose estimation approach that uses CNN to detect 2D and 3D pose jointly.
Then, an optimization based skeletal fitting method is applied to estimate 3D poses
in real-time. All these methods, however, work for single person only. On the other
hand, we propose a multi-person 3D pose estimation approach which automatically
estimates person-specific 3D skeleton and initial 3D location for each person in the
scene. Thereafter, the pose of every person is estimated by means of optimizing an
energy function for multi-person skeleton fitting.

3 Overview

Input to our approach can be either the live stream of a monocular RGB camera (e.g. we-
bcam or VR-headset), YouTube video, or video captured with a mobile-phone camera.
Any of these inputs yield a single frame Ii at discrete points in time i = {1, 2, 3, ...}.
For frame Ii, the final output is X = {X1, ...,Xprsn} where prsn is the number of
persons in the scene . Xj is the 3D skeletal pose parameters of the person with index j.
This output is temporally consistent and in global 3D space which makes it perfect for
applications such as virtual reality and character control. Our algorithm works with any
camera (i.e. moving, static, webcam, or spherical camera with strong distortion) and
general scenes (i.e. indoors or outdoors with strong illumination changes).

An outline of the processing pipeline is given in Figure 2. Many human motion
capture algorithms such as [20, 21, 51] assume given person-specific 3D skeletons and
initial pose parameters Xinit. This number of skeletons is fixed over the whole sequence.
In contrast to these algorithms, we automatically estimate the number of persons in the
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scene. Then, we automatically generate person-specific 3D skeletons and estimate the
initial location of each person in the scene. All these automatic steps are done in real-
time at the beginning of each sequence which we refer to as initialization phase. The
basic idea of our automatic skeleton generation approach is to adapt a default human
skeleton to the length of each bone of each person. To this end, anthropometric data
tables are used to define the length of each bone as a function of the height of each
person; see Section 4.2 for details.

Given the person-specific 3D skeletons, it is still not possible to start the tracking
process without defining the initial pose of each person. Existing human motion capture
algorithms either estimate the initial pose manually or use computationally expensive
methods such as [8]. In this paper, we automatically estimate the 3D root location of
each person in the scene which resolves this limitation; see Section 4.2 for details.

In the tracking phase, we start with a CNN-based approach [13, 11] to estimate the
2D locations of the body-parts for each person in the scene. The output of this step is the
matrix J = [J1, ..., Jprsn] where Ji contains body-parts locations of person i. However,
the order and number of the persons in J may vary from frame to frame. Therefore, we
use Equation 4 to find the 2D body-parts positions Ji corresponding to specific 3D
skeleton. Thereafter, we dynamically generate 3D skeletons for persons who enter the
scene and delete the skeletons of those who left; see Section 4.3 for details.

The pose parameters X = {X1, ...,Xprsn} are optimized given the 2D body-parts
positions with the following energy function at each time frame Ii:

E(X,J) = EFIT (X,J)− wLEL(X)− wAEA(X) (1)

where EFIT (X,J) is the skeletons fitting term (Section 4.3). EL(X) enforces joint
limits, and EA(X) is a smoothness term penalizing strong accelerations; see [51] for
details. The weights wl = 0.1 and wa = 0.05 were found experimentally and are kept
constant in all experiments. This energy function is smooth and analytically differen-
tiable. Thus, it can be optimized efficiently using standard gradient ascent initialized
with the initial pose estimated in Section 4.2.

4 Real-time Multi-person 3D Human Pose Estimation

In this section, we describe in detail the components of our fully automatic algorithm
which captures articulated skeleton motion of several subjects in general scenes from
monocular RGB input. The initialization phase is discussed in Section 4.1 and Section
4.2, while the tracking phase is explained in Section 4.3.

4.1 Automatic 3D Skeletons Generation

Human motion capture algorithms require human 3D model with properly personalized
skeleton and/or body shape and appearance to successfully track a single person. Many
algorithms consider model personalization as a different problem and use manual or
semi-automatic model generation approach, which greatly reduces their applicability.
In this section, we propose a novel automatic approach that generates a skeleton specific
to each person.
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In [46], an automatic algorithm that jointly creates skeleton and body model of a
single person is presented. However, this algorithm requires many RGB cameras to es-
timate the body model. In [19, 21], the skeleton and the body model of each person
is generated in a semi-automatic way from a set of calibration poses prior to motion
recording. Nonetheless, in case of no control over the footage and person motion, their
method fails. Therefore, developing a simple, efficient, and automatic human 3D skele-
ton estimation approach is very important as it enables our solution to be adopted in
more practical applications where the manual model generation is not feasible. We pro-
pose the first skeleton generation approach to automatically estimate skeletons for many
persons in real-time.

In our approach, we generate a default skeleton for every person. The initial number
of persons is automatically estimated given the 2D detections of the first frame. Then,
we adapt the bone length of each skeleton to match the corresponding person. Our
default skeleton consists of 25 bones and 26 joints. Each joint is defined by an offset
to its parent joint and a rotation represented in axis-angle form. In total, the model
consists of 73 parameters (70 rotational and 3 translational); see [19] for details. The
anthropomorphic data tables [12] allow to define the length of each bone in the skeleton
as a function of the height of the person. Figure 3 shows part of the anthropomorphic
data table which defines the relation between the length of the upper arm bone and
the height of the person. With these tables, the skeleton generation task is simplified
to the estimation of a single parameter (i.e. the height of the person). Inspired by [40,
17], the height of each person can be estimated from monocular RGB camera by back-
projecting 2D features of an object into the 3D scene space. The output of this step is a
person-specific human 3D skeleton for every person in the scene.

Fig. 3: Part of the anthropometric data tables which is used for person-specific 3D hu-
man skeletons generation: height data table (left), the corresponding table of upper arm
length [12] (right).
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4.2 Multi-person Skeleton Localization

Given the personalized skeleton, the motion capture process can not start without initial
3D pose of each person. This essential initialization is, unfortunately, neglected by many
methods and solved with manual initialization step, or with a different computationally
expensive approach such as [8]. As our algorithm is stable even with inaccurate initial
poses, we simplify the initial pose estimation problem to the estimation of the initial root
position (i.e. 3D point between hips) of each person. To this end, we use the heights
H3D

i of each person i, their 2D body-part detections in the first frame Ji , and the
monocular camera focal length f . The individual heights H3D

i can be estimated as in
Section 4.1, while the 2D body-parts detections Ji are estimated using the CNN-based
algorithm; see Section 4.3 for details. As the upper body is usually more visible than
the lower body, we use the height of the torso H3D

trs,i ≈ 0.3 ∗ H3D
i for estimating the

root depth. The 2D height of the torso H2D
trs,i is the distance between the neck jnck,j

and the root jrt,i = (jlhip,i + jrhip,i)/2. With this, the depth of the root is calculated
by:

z3Di =
H3D

trs,i ∗ f
H2D

trs,i

. (2)

Then, the 3D root position is calculated by:

{x3Di , y3Di , z3Di } = Φ−1(jxrt,i ∗ z3Di , jyrt,i ∗ z
3D
i , z3Di ) (3)

where Φ is the projection operator. Thereafter, each skeleton is automatically moved
such that its root position matches the root location of the corresponding person in 3D
space.

4.3 Skeleton Fitting for Dynamic Number of Persons

In the initialization phase, personalized skeletons and their initial 3D locations are es-
timated in real-time once at the beginning of the tracking process. On the other hand,
the tracking phase is repeated for every frame. The first step of the tracking phase is the
estimation of the 2D body-parts positions. Recently, many CNN based methods man-
aged to accurately estimate these 2D body-parts positions [13, 26, 11]. Although, any
of these methods can be used in our framework, we used both [13] and [11] in our ex-
periments. As [13] achieves state-of-the art accuracy with multi-person, the majority of
our results are based on this algorithm. Therefore, in this section, we assume, without
loss of generality, that 2D body-part positions are estimated with [13].

The 2D body-part detection algorithm does not have any temporal relation between
consecutive frames. Thus, the order of the resulting 2D body-part detections in J =
[J1, ..., Jprsn] for one frame can be different the previous frame. This means that the
body-parts positions Jm may correspond to a different person in each frame. For this
reason, the next step in our tracking phase is to associate each existing 3D skeleton with
the corresponding 2D detections Jm in each frame. To this end, we define a similarity
measure between the skeleton defined by pose parameters Xk and Jm = [jm,1, ...jm,prt]
where prt is the number of 2D body part detections of one person. This is done by
first projecting the 3D joint positions defined by Xk into the 2D image plane using the
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projection operator Φ. Thereafter, the distance between each projected 3D joint and the
corresponding 2D detection is calculated. The final similarity between skeleton with
index k and detections in Jm is defined as follows:

SIMk,m =

nprt∑
l=1

‖Φ(fk,l(Xk))− jm,l‖ (4)

where fk,l is the 3D joint position corresponding to the 2D body part jm,l. At the end of
this step, each skeleton with index k will be associated with the 2D detection Ji where
i = arg minx SIMk,x.

For tracking varying number of persons, we need to generate a new 3D skeleton for
each person who enters the scene and remove the skeleton of those who leave the scene.
After associating each 3D skeleton with the corresponding 2D detections Ji, some items
of J may be left without a corresponding 3D skeleton. These items correspond to either
persons who just entered the scene or false positive detection of a human. To distinguish
between these two cases, we use the confidence of each body part detection in Ji which
is an additional output of the CNN-based approach. This confidence allows to compute
a score for each Ji which corresponds to probability of a new person entering the scene.
For each new Ji with score above the threshold α = 0.5, we generate 3D skeleton for
the corresponding person and estimate the respective initial 3D location. On the other
hand, in case of a person leaving the scene or largely occluded, Ji corresponding to an
existing skeleton will either have very low score or disappear from J. In both cases, we
remove that skeleton.

Our multi-person skeleton fitting term measures the similarities between a given
skeleton pose Xn corresponding to one of the persons and 2D body-parts positions Jn
of that person. Similar to Equation 4, we project each 3D joint position and calculate
the distance to the corresponding 2D detection jn,l. The final fitting term is defined as:

EFIT (X, J) =
nprsn∑
n=1

nprt∑
l=1

w(jn,l) exp

(
−‖Φ(fn,l(Xn))− jn,l‖2

σ2

)
(5)

where w(jn,l) is the confidence of the 2D body-parts detection jn,l. This confidence is
estimated by the CNN body-parts estimation method.

Applying per-frame pose estimation techniques on a video does not ensure tempo-
ral consistency of motion. Thus, small pose inaccuracies lead to temporal jitter. There-
fore, we combine our multi-person skeletons fitting energy with temporal filtering and
smoothing in a joint optimization framework to obtain an accurate, temporally stable
and robust result; see Equation 1.

5 Experiments and Results

We demonstrate the effectiveness of our algorithm through experimental evaluations of
more than 20 challenging real world sequences. Some of these sequences were acquired
from community videos including varying number of persons performing complex and
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(a) Community videos (b) Marconi dataset

(c) Spherical camera images (d) Mobile phone camera
Fig. 4: Sample results with overlaid 2D skeletons estimated with Implementation 1
(top) and respective 3D reconstructions (bottom) which show successful multi-person
tracking in challenging scenarios. (a) shows multi-person pose results over YouTube
videos playing table tennis and fencing sports. (b) shows results over selected difficult
sequences from Marconi dataset. (c) shows pose estimation results inside a car and
outdoor scene recorded using a spherical RGB camera. (d) shows tracking results with
strong illumination changes in outdoor scene captured using mobile phone camera
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fast motions. We also captured many outdoor and indoor sequences with mobile-phone
and spherical camera. One of the outdoor sequences was recorded in car with spherical
camera to illustrate the usefulness of our algorithm for applications such as driving as-
sistance system. We performed live tracking of multiple persons at around 23Hz with
low quality webcam. In addition to that, we used many sequences from the Human3.6M
[27] and the Marconi [19] datasets. These sequences vary in numbers and identities of
persons, complexity and speed of the motion, the lighting conditions, cameras types
(e.g. mobile-phone, GoPro, spherical cameras, and webcams), the frame resolutions,
and the frame rates. Our algorithm is the first multi-person monocular human motion
capture method which does not require any manual work for 3D human model and
initial pose adaptation. It automatically generates 3D skeletons and estimates initial
poses for multiple person. It operates with input images without the need of bound-
ing box cropping. As a result of this, our experimental setup is very simple. Given the
input images and the focal length of a single RGB camera, we produce high quality re-
construction results. Qualitative results can be viewed in accompanying supplementary
video. The run-time of our algorithm depends on the number of persons in the scene,
the complexity of the motion and the resolution of the input frames. Our computations
are performed on a 8-core Xeon CPU and a GeForce GTX 1080 GPU. Although our
algorithm’s implementation is not yet well optimized for improved run-time perfor-
mance, average processing time of a single frame from a single person sequence (e.g.
the Greeting sequence from the Human3.6M dataset [27]) is 44 milliseconds. The 2D
body parts detection [13] takes 32 milliseconds while the 3D skeleton fitting takes 12
milliseconds. Given the body parts detections of the first frame and the height of each
person, the initialization phase takes around 0.01 milliseconds.

Our algorithm is not restricted to use a particular 2D body-parts detection method.
Hence, we show results of our algorithm with two different body parts detection meth-
ods. The first implementation Implementation 1 uses [13] for 2D body-parts detec-
tions. This implementation is discussed in details in Section 4. Notably, in contrast to
other 2D body part detection methods, [13] does not require cropping to track multi-
person sequences. On the other hand, our second implementation Implementation 2,
which is based on [11], requires cropping of every person. However, our algorithm can
perform cropping automatically and without significant change to our original pipeline
in Figure 2. To this end, the rough pose of each person is estimated by extrapolating his
pose from the previous frame. The bounding box of each person is estimated by pro-
jecting each 3D skeleton to the camera view. This allows to crop and scale each person.
With this additional automatic step, [11] can be used instead of [13] in our pipeline for
2D body part detections.

Qualitative Results: We used our first implementation Implementation 1 to track
mroe than 15 sequences. Sample frames from the tracked sequences are shown in Figure
1 and Figure 4. Please, see the supplementary video for more detailed tracking results.
Our algorithm successfully estimated the pose parameters of multiple persons in chal-
lenging outdoor and indoor sequences with monocular RGB camera. This shows the
ability of our algorithm to successfully track sequences with many (i.e. up to eight) per-
sons performing complex and fast motions under strong lighting variations and strong
distortion. Previous monocular methods such as [38, 58, 37] fail to track these sequences
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Fig. 5: Sample images from the H3.6M dataset (left column) and the Marconi dataset
(right column) with overlaid 2D Skeleton along-with respective 3D pose recovery using
Implementation 2 .

in real-time. We also tracked a sequence captured in car and several sequences captured
with mobile-phone. This shows that our approach is suitable for practical applications
in different fields including VR. In Figure 5, we show the 3D pose reconstruction re-
sults based on our second implementation Implementation 2. Two sequences from the
public datasets the Human3.6M and the Marconi are successfully tracked.

To demonstrate the usefulness of our algorithm for real-time applications (e.g. dy-
namically including multiple persons in a virtual environment using the camera of the
VR-headset), we tracked the motion of multiple persons from live stream of webcam.
Figure 6 shows that our real-time 3D pose estimation provides a natural motion inter-
face in challenging scenarios. Furthermore, we capture sequence with a mobile-phone
camera where several people enter and leave the scene. Our algorithm succeed in au-
tomatically detecting the change in number of persons and generating or deleting the
corresponding 3D skeletons on the fly while tracking; see the supplementary video.

Comparison: In Figure 7, we compare the accuracy of our algorithm with the ac-
curacy of [38, 18] on two challenging sequences. Our algorithm managed to accurately
track all the persons in two sequences; see the supplementary video for more detailed
tracking results. While [18] work only offline, [38] achieved lower tracking accuracy
for only one of the two persons in the scene.

System Components Evaluation: We quantitatively evaluate the importance of the
components of our algorithm by creating different alternatives of it. The first alternative
is constructed by removing the skeleton generation step. This means that the default
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Fig. 6: The real-time 3D pose estimation with Implementation 1 (Top) and Implemen-
tation 2 (Bottom). Our algorithm provides a natural motion interface on images from
live webcam video.

skeleton is used without adaptation to the tracked person. The second alternative is
constructed by removing the initial pose localization step where the initial pose param-
eters are set to zero or to random values. We evaluated these alternatives by tracking
the Walking sequence from Human3.6M dataset [27] which captures Subject S9. The
Mean Per Joint Position Error (MPJPE) with our complete algorithm is 90mm while it
is 460mm without the first alternative. The second alternative fails completely because
the energy function is non-convex which leads to stuck in a local maxima; see Figure 9
and the supplementary video.

Quantitative Evaluation: We quantitatively evaluate our algorithm using the Di-
rections, Posing and Waiting sequences from Human3.6M dataset [27] which capture
Subject S9. Figure 8 shows sample images with overlaid 2D skeletons and respective
3D reconstructions from these sequences. The average error of all frames of these three
sequences is 159.33mm. [38] achieves lower error with monocular RGB camera. How-
ever, the CNN body-parts detector of [38] is trained on images from the test dataset (i.e.
the Human3.6M dataset [27]). On the other hand, the CNN body-parts detectors which
we use, are trained on different datasets such as the MPII Human Pose dataset [4].

Discussion: Our approach is subject to a few limitations. Currently, the depth esti-
mation of our algorithm is not very accurate, especially in case of occlusion of wrists
and ankles. This causes relatively higher 3D joint position errors in comparison to other
methods. However, this is also a common problem with approaches relying on a monoc-
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Fig. 7: Side-by-side comparison of our method against the monocular single-person
human pose estimation methods of Mehta et al. [38] (top right) and the offline method
of Elhayek et al. [18] (bottom right) which tracks two persons with three cameras. Our
approach succeeds in accurately tracking all persons in the scene (left column).

ular camera setup as depth estimation is severely ill posed. Thus, a slight inaccuracy in
the 2D body-parts estimation leads to big error in the depth estimation. Unlike other
methods, our approach is still able to recover from the tracking failures, even after long
occlusion of many body-parts; see the supplementary video. Our tracking results of
many sequences show that our algorithm succeeds in challenging multi-person scenar-
ios where all other human motion tracking methods based on single RGB camera fail.
Moreover, we achieve high temporal stability and reasonable accuracy. This accuracy
can also be improved by using 2D body part detector which is more stable to occlusions.

6 Conclusion and Future Work

We have presented the first fully automatic method to estimate 3D kinematic poses of
multiple persons in temporally stable manner directly from a single RGB camera. Our
approach automatically detects the number of persons in the scene and generates cor-
responding person-specific 3D skeletons based on anthropometric data tables. It also
automatically estimates the initial 3D location of each person which allows to define
their coarse initial poses. In the tracking phase, it fits each 3D skeleton to the corre-
sponding 2D body-parts detections. These detections can be estimated using any 2D
body-part estimation method which allows to easily upgrade our algorithm with any
progress in 2D pose estimation. Our algorithm dynamically generates 3D skeletons for
persons who enter the scene and delete the skeletons of those who leave. In contrast
to previous works, our fully automatic algorithm can operate with multiple persons in
real-time without the need of bounding boxes. This makes our algorithm optimal for VR
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Fig. 8: Sample images from H3.6M sequences used for quantitative evaluations. Top
row shows overlaid 2D Skeletons and bottom row shows 3D visualizations of the cap-
tured skeletons. From left to right, we show tracking results of Directions, Posing and
Waiting sequences for Subject S9 whose Mean Per Joint Position Error is 153mm,
158mm and 167mm respectively.

Fig. 9: Importance of algorithmic components. Left: tracking result of our algorithm;
MPJPE 90mm. Middle: an alternative of our algorithm constructed by removing the
skeleton generation step (i.e. using the default skeleton); MPJPE 460mm. Right: sec-
ond alternative constructed by removing initial pose localization step which fails com-
pletely.

application. We have demonstrated the effectiveness of our system by tracking many
sequences with strong distortion in videos, strong illumination changes, and multiple
persons performing complex motions. Moreover, we have shown results in real-time
scenarios, including live streaming from a webcam. As future work, we are going to
investigate the problem of depth estimation uncertainty which could be reduced with
domain specific knowledge. Furthermore, in order to improve the run-time of our algo-
rithm, we intend to employ more advanced optimization algorithms.
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