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Abstract This paper addresses the issues of explainability of case-based

support systems, particularly structural CBR systems dominated by

knowledge-rich comprehensive cases and domain models. We show how

explanation patterns and contextually enriched explanations of retrieval

results can provide human-understandable insights on the system behavior,

justify the shown results, and recommend the best cases to be considered

for further use. We applied and implemented our approach as an agent-

based system module within a case-based assistance framework for support

of the early conceptual phases in architectural design, taking a single

floor plan as a case with a high number of attributes. For the retrieval

phase, a semantic search pattern structure, Semantic Fingerprint, was

applied, whereas the explanation generation phase is controlled by a

number of explanation patterns adapted from already existing explanation

goals. Rulesets, case bases, and natural language generation are used

for construction and automatic revision of explanation expressions. A

contextualization feature categorizes the results into different context

classes and includes this information into the explanation. A user study

we conducted after the implementation of the explanation algorithm

resulted in good acceptance by the representatives of the architectural

domain, a quantitative experiment revealed a high rate of valid generated

explanations and a reasonable distribution of patterns and contexts.

Keywords: case-based design, knowledge-supported design, explainable artificial
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1 Introduction

Users of modern AI-based decision support systems are usually not provided
with a sufficient amount of information about the system’s inner processes that
lead to the presented result, solution, or recommendation. However, often, a



particular requirement of users of such intelligent information systems is to have
a possibility to understand and even reconstruct the system’s behavior in order
to follow its reasoning process. This is helpful for both, users and the system,
if it is planned by developers that interaction with the system should be based
on users’ trust in the system. Some systems try to satisfy this requirement by
including a feature to track the system’s behavior, e.g., by providing the users
and/or developers with comprehensive documentation or a special API endpoint
that can return some explanation data with a certain grade of transparency. In
many cases, however, an additional action from the user is required, which is not
always desirable from the usability and user experience point of view.

In this paper, we present an automatic approach for explaining of design
support system’s actions, based on special explanation patterns that can be
detected in the user query and the corresponding retrieval results. Our approach
consists of three main steps – pattern recognition, validation, and contextualization
(PRVC) – and is implemented in MetisCBR [6], a case-based framework for
support of early design phases in architectutre, as the underlying technique
for its results explanation module, the Explainer. This work is a continuation,
further development, and enhancement of our pilot research into explanation of
case-based design recommendations [3] (see also Section 4.1). In this paper, we
describe a much more detailed approach that deals with deep properties of cases
and builds a contextual relation between result sets from the same user session.

This paper is structured as follows: in Section 2, we describe our previous work
in the domain of case-based support of the early conceptual phases in architecture
and other related research in the domain of explainable AI. In Section 3, we
shortly describe the MetisCBR framework, followed by the Section 4, where we
provide a detailed description of our new explanation approach and its application
within the framework. Finally, in the last two sections, we present the results
of the user study and the quantitative experiment that evaluated the approach,
and conclude the paper with a short review of this work and our future research.

2 Related Work

Foundations of explainability of CBR-based software were defined in a seminal
work [24] that described current and future issues of this domain in relation
to other CBR tasks, such as retrieval and retention. Some of these issues are
highly related to our work presented in this paper and are described later in this
section. However, before being summarized by Roth-Berghofer [24], earlier work
on explanations in CBR has been published, e.g., Aamodt described explanation-
driven case-based reasoning [1]. Explanations were also mentioned as an important
feature of CBR systems in a survey [9] of functions of all four steps (Retrieve,
Reuse, Revise, Retain) of the CBR cycle. In a series of work about explanation-
aware systems [8,25,27,28], explanation patterns were presented that formalize
the explainable system knowledge by means of applying a control structure
with a collection of patterns that represent explanation problem frame. Problem
frames themselves are a core concept presented by Jackson [13]. For recommender
systems, explainability-themed research was conducted as well [19,29,30].



In the last decades, multiple research initiatives were started to support design
process in creative engineering domains; issues of case-based design (CBD) were
examined [18]. Especially in architecture, methods of CBD made a big progress
with seminal projects such as PRECEDENTS [20], ARCHIE [32] SEED [11], or
FABEL [31]. Later, a number of approaches continued research into this topic:
DIM [14], VAT [17], or CaseBook [12]. Some of them had an explicit explanation
facility implemented and established this fucntionality in CBR-CAAD approaches:
ARCHIE contains explanations in the cases as ‘outcomes’ (goal satisfaction
summary) and ‘lessons to be learned’ (contextual performance of the cases),
CaseBook contains a similarity explanation report (no information is available
about its concrete functionality or algorithms). One of the most recent research
projects that worked on further research into the topic of (distributed) CBR-based
design support, is Metis (funded by German Research Foundation). The focus of
Metis were the graph-based and case-based retrieval methods. MetisCBR, the
framework for which the explanation component presented in this paper was
developed, was initially one of these methods. Others were the adapted VF2
graph matching method and the index-based retrieval in a graph database [26].

Explainability of AI systems has become an emerging topic during the last
years, based on the wide distribution of such systems in a multitude of research/ap-
plication domains. Initiatives, such as workshops [2, 16,21–23] collect the current
trends and newest approaches. In contrast to many other AI fields, case-based
reasoning, as mentioned earlier in this section, explored and emphasized the im-
portance of explanations even before the most well-known 4R-structure (Retrieve,
Reuse, Revise, Retain) was presented. Roth-Berghofer’s work on foundational
issues of explainability in CBR [24] argued that the (commercial) CBR systems
provide, if implemented, only simplistic types of explanations (why-, how-, and
purpose-explanations). What these systems often do not provide are the so-called
cognitive explanations that, inter alia, aim at answering the question of how the
results are related to each other in different dimensions (contexts, in our case).

Our approach in this paper is an effort to combine all of these types of
explanations to provide a versatile and universal algorithm for construction of
reasonable explanations in structural CBR systems and to establish further the
tradition of explanation facility in CBR-CAAD systems.

3 MetisCBR
MetisCBR1 is a distributed system for case-based support of the early conceptual
phases in archtecture. A case in MetisCBR is a floor plan that has attributes
according to the Rooms+Edges+Metadata domain model [5] (see Figure 2). The
system’s core functionality is the case-based retrieval with semantic fingerprints,
where the fingerprints (FPs), based on a hierarchical description structure [15],
represent a collection of attributes according to structural/relational floor plan
abstractions, thus acting as semantic search patterns. For each query, the FPs
selected by the user are distributed among the retrieval containers to decrease
the complexity of search. The currently implemented FPs are shown in Figure 1.

1 http://veisen.de/metiscbr/

http://veisen.de/metiscbr/


Fingerprint Label / Specifcs Fingerprint Label / Specifcs

FP1 Room Count
No connections between 
rooms and no labels specifed

FP5 Adjacency
Rooms information is 
complete, no edge labels

FP2 Relation Count
No room information 
specifed

FP6 Accessibility
Edge information is complete, 
no room labels

FP3 Room Graph
Anonymous representation 
(no labels) of rooms & edges

FP7 Full Graph
All information about rooms 
and edges available

FP4 Room Types
No room connections, only 
room labels are specifed

FP8 Natural Light
Light condition attributes

Figure 1: Current semantic fingerprints of MetisCBR. FP1, FP2, FP4, FP8 are
metadata-based (non-graph-based), FP3, FP5-7 are graph-based. Figure from [3].
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Figure 2: Left: the domain model Rooms+Edges+Metadata and an exemplary
case (floor plan) that consists of 4 rooms and 4 edges connected with a common
floor plan ID. Bottom right: the general structure of an explanation tree with the
explanation levels for a single retrieval result. Top right: the current Explainer
module (asterisk marks the agents from the previous version of the module).



4 PRVC Methodology for Explanation Generation

In this section, we present our methodology for creation of explanations for design
recommendations. We think that this methodology might be of use not only for
floor plan cases, but also for cases from other domains and other structural CBR
systems. The only requirement to adapt this methodology for other domains
and systems is a domain model that can hierarchically differentiate between
cases, concepts, and attributes, or similar structures. Firstly, however, we give a
definition of explanation as we use it in our support system.

Definition 1 Explanation is a quadruple E = (P, V, C, R), where P is the set of
explanation patterns, V is the vocabulary for explanation expressions, C is the
set of case contexts, and R is the set of mapping rules between P , V , and C.

4.1 Previous Explainability Function in MetisCBR

The previous explainability function in MetisCBR is described in detail in our
previous work [3]. In this section, only a brief overview of this previous/first
version of the explanation module, the Explainer, is given to present its features
relevant for the purposes of this paper. As shown in Figure 2, two agents govern the
process of generation of explanations. The first one is the Explanation Deliverer
agent whose task is to receive the explanation request for a result and to forward
it for further processing, and to receive the results enriched with explanations
for forwarding them for displaying in the user interface. The second agent is the
Explanation Creator agent who is responsible for actual creation/generation of
explanations for the results forwarded by the Deliverer. The Creator tries to
detect explanation patterns within the query-result object, that consists of the
user query and the corresponding results, and generates an explanation expression
based on the patterns detected (more on explanation patterns is provided in the
next sections). After that, the explanation expression is validated against a set
of ground-truth expressions, and, if valid, is added to the result.

4.2 Pattern Recognition Phase

The first phase of the PRVC methodology deals with detection of explanation
patterns in the previously mentioned query-result object. This part of the explana-
tion generation process works with a so-called explanation tree, which is created
for each single result, and where each explanation level of the tree corresponds to
an abstraction level of the domain model (see also Figure 2):

1. Fingerprint Level – represents the highest possible abstraction level of the
hierarchy and corresponds to the semantic fingerprint selected by the user.

2. Concept Level – this level stands for the core structural concepts of the
domain model: Floor plan metadata, Room, and Edge.

3. Attribute Level – contains attributes of the core concepts according to the
fingerprint (i.e., only the attributes of the FP are considered for explanation).



As shown in Figure 2, the explanation levels are distributed among the
explanation agents which in turn represent an explanation pattern. In the next
sections, these patterns and the procedures for their detection and analysis are
presented more in detail. First, however, we give a short description of the theory
behind the explanation problem frames and patterns.

Explanation Problem Frames and Patterns The explanation patterns [8]
provide a means for abstracted description of explanation-aware computing
problems when it comes to dealing with the question of how the reasoning process
of an intelligent information system should be made understandable to the user.
The concept of explanation patterns is a derivation from the original concept
of generic software engineering problem frames [13], and thus an adaptation
of these frames for the explanation-aware computing domain. Therefore, the
explanation patterns can also be considered explanation problem frames. The
general structure of an explanation pattern consists of a machine (representation
of the software component that creates the explanation), domain (representation
of the application area), and requirements (criteria of the proper solution space
for a problem, in this case a space of possible explanations). Our rationale for
use of explanation patterns for the explanation component was the similarity
of their concept to the concept of semantic fingerprints, so that our knowledge
and expertise in work with patterns could be transferred. As a result of our work
on this transfer, a new Fingerprint machine was created [3] that connects the
semantic fingerprints of architecture to the explanation patterns of Relevance,
Justification, and Transparency [10].

Relevance Pattern The Relevance pattern was conceptualized to justify the
questions that system asks the user if certain requirements have not been met.
For example, if not enough relevant information was provided to properly answer
the query, the system may ask the user for more relevant information and display
a message why it needs this information, e.g., why the answer/result may be
inexact or incorrect in the current context (the purpose-question [24]).

To provide the new version of the Explainer with abilities to detect queries
and cases that could not be considered for a proper similarity assessment because
of their incompleteness or inexactness, we implemented a rule-based proving
mechanism that checks each structural entity of the query and of the result, i.e.,
each room (node) and room connection (edge), for the structural completeness
requirement. Currently, the structural completeness requirement for rooms is
considered met if the room is not isolated – that is, each node has to be connected
to at least one other node, and if the room label is in the list of enabled labels, such
as Working, Living, Sleeping, or Corridor. For edges, this requirement employs
a ruleset that checks their source and target rooms for the same label availability
requirement – i.e., each edge has to have both source and target to be considered
structurally correct. Depending on the outcome of this check, each entity in
the result gets an additional relevance label that corresponds to its structural
correctness (i.e., RelevanceQuery, RelevanceResult, or RelevanceNone). The
relevance score relScore for rooms (relScorer) or edges (relScoree) is then:



relScore = |RQ| + |RR|
|RN | + |RQ| + |RR| + e

(1)

Where RQ is the set of entities labeled with RelevanceQuery, the same for
RR (RelevanceResult), and RN (RelevanceNone). e is the error rate for entities
whose relevance could not be determined. The entire result floor plan then gets
its own relevance label depending on condition resolving shown in Algorithm 1.

Data: relScorer, relScoree, Relevance threshold trel, Floor plan f ,
Floor plan relevance relf , Expression vocabulary E, Relevance
expression set Erel ⊆ E

if relScorer > trel or relScoree > trel then
relf = true
if relScorer >= relScoree then

erel = erooms
rel ∈ Erel

else

erel = eedges
rel ∈ Erel

end

else
relf = false

end

Algorithm 1: Rule-based relevance determination for a result floor plan.
The outcome of this algorithm, if the relevance pattern has been detected for

the entire result (i.e., relf = true), is an expression erel from the corresponding
subset of expressions that should help the user understand why more data is
needed by the system to ensure proper similarity assessment for this query or
result. Some examples of such expressions are:

– ‘This database floor plan may not have enough structural information about
room connections for proper similarity assessment.’

– ‘Not enough information has been provided about room configuration to
properly assess similarity for this query. Please provide more structural
information for the room configuration.’

Justification Pattern Reasoning of why a result might be good/helfpul is the
task of the Justification pattern (why-question [24]). For the proper implementa-
tion of this pattern in the new Explainer, we relied on our previously applied
reasoning premise: a possibly helfpul result is a result whose overall similarity
should be at least over the threshold of a sufficient similarity grade. Like in the
first version of the Explainer [3] (and for results of the retrieval phase [5]), we
applied the following similarity grades: very similar if result’s overall similarity
Sim ≥ 0.75, similar if 0.75 > Sim ≥ 0.5, sufficiently similar if 0.5 > Sim ≥ 0.25,
and unsimilar if Sim < 0.25. For the extension and more detailed recognition of
possibly helpful designs we introduced an additional justification score jstScore:

jstScore = 1
2( 1

n

n∑
i=1

sei
+ 1

m

m∑
i=1

sri
) (2)



Where se ∈ SE are the similarity values of edge entities of a result, the
same for rooms with sr ∈ SR. It is important to notice, however, that the
jstScore computation and all other justification operations are only executed if
the Relevance pattern has not been detected (i.e., if relf = false, see Algorithm
1). After the computation of jstScore, the justification expression is added to the
explanation text of the result, depending on conditions shown in Algorithm 2:

Data: jstScore, Threshold set Tjst, Floor plan f , Floor plan
justification jstf , Expression vocabulary E, Justification
expression set Ejst ⊆ E, Similarity grades G, Justification classes
Cjst = {0 : high, 1 : middle, 2 : low}

if jstScore > thigh
jst ∈ Tjst then

jstf = true; cjst = 0
else if jstScore > tmiddle

jst ∈ Tjst then
jstf = true; cjst = 1

else
jstf = false; cjst = 2

end

ejst = mapping(cjst, gf ∈ G, Ejst)
Algorithm 2: Justification expression determination for a result floor plan.

Where Tjst is a set of threshold values for classification of justification depend-
ing on its jstScore. Currently, following values are used: thigh

jst = 0.6, tmiddle
jst = 0.3.

The mapping function assigns the proper justification expression for the given
justification class cjst and the similarity grade gf ∈ G of the result floor plan.

Transparency Pattern The last implemented explanation pattern is the Trans-
parency pattern (the how-question [24]), whose task is to provide a means for
decoding of the system’s pathways to find a result. We think that the users of our
system should be informed in as much detail as possible, but at the same time we
are aware of the fact that they know how the system works in general. Therefore,
we came to a conclusion that a summary of similarity assessment on the attribute
level is the best way to provide the users with sufficient information about this
procedure. To ensure this, a completely new approach has been implemented
for the Transparency pattern that takes all the local similarity values from the
entity pre-selection step of the retrieval strategy [5] into account. Generally, the
transparency reasoning process consists of the following tasks:

1. Collect all information of the entity comparison history, i.e., how often and
for which entity of the query the entity of the result has been object of
comparison, and include the corresponding similarity values.

2. Reason about this data, that is, produce an understandable, human-readable
summary of this data according to the user requirements and techical terms.

From the collected data, the transparency agent tries to derive the relevant
similarity data for each of the attributes for the currently selected fingerprint
and summarizes this data by grouping the attributes with the same overall
similarity grade. The outcome of the reasoning process is a summarized statistical



expression about the attributes’ local similarity assessment (local transparency)
followed by a detailed list of the mean similarity grades for each attribute for
each entity. The same procedure is also conducted for the complete result set and
is handled as the global transparency, and placed on top of the result set. Some
examples of such outcomes are provided below (attribute overview omitted):

– ‘This floor plan provides a sufficient grade of similarity in terms of passages,
room functionalities, and light.’ (local transparency, FP 6 Accessibility)

– ‘This result set has an overall high value of similarity for room area, and light
condition. Low similarity has been determined for door connections.’ (global)

4.3 Validation

The basic principles of the validation process already introduced in [3] remained
unchanged, especially because of its good performance: the complete explanation
undergoes a feature extraction process, these features build together a case, i.e.,
become the attributes of this case which in turn becomes a query and is compared
with the cases from the ground-truth (i.e., ‘golden standard’) explanation case
base. The value of similarity with the most similar ‘golden standard’ case then
becomes the validation similarity vmax. The explanation is considered valid if
vmax exceeds the specified threshold. For the new version of the Explainer, we
modified the attributes of the explanation case and replaced the explanation text
with the fingerprint label (see Figure 1) and the overall FP similarity value. The
detected explanation patterns remained the main similarity assessment feature
for the validation. However, to provide a more exact comparison for the patterns
as well, we now take into account the undetected patterns too, and do not use the
detected ones exclusively. The following weighted sum is now in use for validation:

v = ωll + ωoo +
n∑

i=1

ωpipi (3)

Where v ∈ V (vmax = max(V )), and ω ∈ Ω are the weights, where ωl is the
weight of the FP label similarity l, ωo is the weight of the overall FP similarity
value o, and ωp are the weights for the similarity values of the patterns.

4.4 Contextualization

The last step of the PRVC methodology, and the completely new feature of the
Explainer, is Contextualization, which is responsible for classification of the results
into different contexts of the user session (see Figure 3), and is intended to provide
a means for cognitive explanations mentioned in Section 2. The inspiration for
this feature came from the experience with different internet services such as
Flickr or Netflix, where the automatic tagging of pictures and categorization of
movies/series are the well-known features. To adapt this feature for our cases, we
consider each user request to the system an action of a conceptualization process
according to the definition of Process defined in our previous work on transfer of
cognitive processes of architectural domain representatives into the system [4].



Definition 2 Process is a triple P = (S, t, A), where S is a set of retrieval
strategies, t is the type of the process (e.g., sequential, semi-sequential, enclosing
iteration), and A is the set of actions. A = As ∪ Ai ∪ Ae (actions can be of
starting, ending, and intermediate type), where As ∧Ae ̸= ∅. Strategies are linked
to actions with a surjective mapping S ↠ A, i.e., ∀a ∈ A∃s ∈ S.

Action 1 Action 2 Action 3 Action 4 Final
action

User session

Result
set 1

Result
set 2

Result
set 3

Result
set 4

Final
result set

Temporary
Contexts CB

Contextualization
classes

Contextualization
Engine

Figure 3: Contextualization of the results of a sequential process.

The basic mode of operation of the contextualization process is based on
feature extraction from a single result: the main semantic and structural properties,
such as room and edge count, room types, or a number of identical room types
between query and result, are extracted from the result data and mapped with
different contextual classes. These classes represent an abstract expression about
the floor plan, some examples are:

– SparseConnection - represents floor plans where the number of connections
is in the interval from lower to marginally higher as the number of rooms.

– RoomCount, EdgeCount - number of rooms and/or room connections is
equal to the corresponding average value of the complete result set.

– RoomTypeDominance - floor plans where a certain room type dominates
the room configuration (e.g., {Living, Living, Living, Kitchen, Sleeping}).

Additionally to the classification step, for each user session a special temporary
case base is created that contains cases where the attributes represent the
extracted features named above, with corresponding values. For each unique floor
plan result from a session, such a case with a count as label is created (if this
case is already available then its count gets increased). For each new single result,
a context similarity value simcontext is then calculated as follows and categorized
into a similarity grade (f is a feature, F is the set of all available features):

simcontext = 1
n

n∑
i=1

simfi
f ∈ F (4)



The result of the contextualization process is a contextual expression that
contains information about contexts available in the single result, providing the
user with additional information about differences and commonalities regarding
the configuration of all results. Exemplary contextual expressions are:

– ‘This result has a high grade of contextual connection to the previous retrieval
results of this session. Available contexts for this result are: Room Type
Dominance, Sparse Connections.’

– ‘This result has a very low grade of contextual connection within this session.
No contexts could be determined.’

The simcontext value is then combined with the overall similarity of the result,
thus influencing its position in the overall result ranking within the result set.
Other influence is the previously mentioned case label, that works as a boost value
for results whose final similarity values are identical.

4.5 Explanation Algorithm

Summarizing all of the steps described above we present the algorithm for
generation of explanations within MetisCBR, that can be transferred or adapted
for other systems. The concrete implementation depends on the domain and the
corresponding domain model, however, the adaptation should not be difficult, as
many structural CBR systems use the attribute-value-based structure for cases.

Enough data
for sim. assessment?

Query-
Result obj.

Create 
Relevance Expression

Calculate 
Justifcation Score

Create 
Justifcation Expression

Validate
Explanation

Explanation
valid?

No Action

Contextualize
Results

Justifcation
detected?

Calculate 
Relevance Score

Perform 
Transparency Reasoning

Create 
Transparency Expression

Results +
Contexts

No

Yes

Yes

Yes

No

Results +
Contexts
Results +
Contexts
Results +
Contexts

No

Figure 4: Algorithm for generation, validation, and contextualization of explana-
tions.



5 User Study and Quantitative Evaluation

To evaluate the new, PRVC-based, Explainer module, we conducted two studies:
the first one was a quantitative experiment that aimed at examination of the
new Explainer for validity of explanations and distribution of detected patterns.
Additionally, we examined the context similarity and contexts distribution of the
result floor plans. In the subsequent user study, we presented the representatives
of the architectural domain with the explanation module and asked them to rate
the produced explanation expressions and context classes.

5.1 Quantitative Experiment

The quantitative test was performed on a case base of 119 floor plans. We used 18
different queries and produced 47 requests (≈ 3 randomly selected FPs per query)
that returned an overall number of 5189 results. 14 ground-truth explanations
were used for validation, i.e., the explanation of each single result was validated
14 times. A threshold of 0.5 was applied to determine the validity. Overall, the
constructed explanations were validated 72646 times for these results. 58408
(80, 4%) of them resulted in a valid outcome – an expectable slightly lower value
than in the previous version [3] (84.825% for 225 cases), considering the more
restricted handling of patterns (inclusion of undetected patterns) and addition
of a new validation attribute. For the theoretical maximum number of validity
determinations for this part of the experiment (78302), overall ≈ 74, 6% of valid
explanations were produced, i.e., ≈ 10 valid explanations per single result. Figure
5 shows the distribution of detected and absent patterns among the results.

JT J None R

20,566

36,008

15,932

140

Pattern Combinations

A
m

ou
nt

Figure 5: Pattern combinations recognized in the results. J , T , and R stand
for Justification, Transparency, and Relevance respectively. JT is the best case,
R is the worst case (not enough data available), None (no R, but also no J
or T ) is detected when the similarity grade of the result is not sufficient. For
non-graph-based FPs (see Figure 1), transparency reasoning was not performed.

For the second part, the quantitative evaluation of the contextualization
process, we first examined the overall context similarity simcontext of the results,
which revealed an average similarity value of ≈ 0.31, where from the total number
of 5189, 2280 results had simcontext of 0.35, 1934 results had simcontext of 0.15,
and 944 results had simcontext of 0.55. Further, we examined the overall count of
the detected classes during contextualization. Similar to the patterns examination,
we show how the contexts were distributed among the results (Figure 6).
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Figure 6: Context classes recognized in the results. SC, RTD, RC, and EC stand
for Sparse Connections, Room Type Dominance, Room Count, and Edge Count
respectively.

5.2 User Study

For the subsequent user study, we used the same floor plan data set as for
the quantitative experiment. The participants, n = 5, were asked to answer a
specific questionnaire that contained questions regarding the understandability
of explanations and their opinion on the contextualization feature. Before the
rating process, each of the participants was asked to run a self-sketched or one
of the already existing queries against the data set and get the corresponding
results and explanations (see Figure 7). 2 FPs should be used for either type
of the query. On average, we spent ≈ 1.5 hours per experiment session for each
participant. Following questions (Q[n]) were included in the rating questionnaire:

1. Are the explanation expressions and their purpose understandable?
2. (After the concept of explanation patterns was explained):

Is it easy to recognize which partial expression belongs to which pattern?
3. Specific pattern questions:

(a) Justification: are more reasons for recommendation required / advisable?
(b) Transparency: Is more statistical data required, why and what exactly?
(c) Relevance: is it understandable why the system needs more data?

4. Is the context-awareness and classification of results easy to recognize?
5. (After the contextualization process was explained):

Is it understandable how the classification / contextualization feature works
and how would you estimate the helpfulness of the current contexts?

Generally, for Q1, experienced users who already knew how the system works
and participated in one or more of our previous studies, found that the textual
explanations are only partly helfpul and wished an additional visualization
between query and result (which is already available for one of the MetisCBR-
compatible user interfaces [7]). They also wished more detailed transparency
explanation, e.g., for each attribute of each room and room connection. The
inexperienced participants, i.e., architects who did not work with MetisCBR before
(but at least knew the general concepts of CBR), found the textual explanations
adequate and could recognize their purpose directly. The expressions themselves
were also considered adequate and understandable.



Explanation Sim Case Query
This result has the following FP similarity:
Relation Count: 38.89% Adjacency: 23.07%
This result might be helpful in the further 
design process, but it only sufficiently 
corresponds to the criteria of your session.

Relation Count
A sufficient contextual connection to the other 
results of this session is available. Following 
contexts have been found for this FP:
Sparse Connections Room Type Dominance

Show average similarity per room and edge

0.3

Figure 7: Query, case, and explanation of a result with a ‘sufficiently similar’ sim-
ilarity grade as they appeared to the participants. Blank lines separate texts for
Justification and Contextualization, the last line contains a link for opening the
statistical expression (Transparency).

For pattern questions (Q2-Q3), all of the participants were able to recognize
which textual part is responsible for which explanation pattern. The positioning of
the justification explanation before all others was considered a good decision, the
length of the corresponding justification text was also considered good. Besides
the already mentioned more detailed transparency data for experienced users, a
filter function for an ‘entity-for-entity’ comparison was requested. The purpose
of systems’ questions in case of lack of sufficient data was also found adequate.

The last examined feature, the contextualization of results (Q4-Q5), was
considered interesting and most enriching. All of the participants could recognize
the context classes and their purpose for the explainability. The fact that the
participants were already familiar with similar concepts from internet services and
portals played a big role. However, some of the contexts, i.e., which features exactly
they represent, were not always clear (e.g., What does ‘sparse connections’ mean?).
Suggestions for new contexts also were made, e.g., RoomDominance, for floor
plans where a certain room has a dominant area value.

6 Conclusion and Future Work
In this work we presented a new, extended, version of our results explanation
approach for architectural design recommendations, which now works by means of
applying the PRVC (pattern recognition, validation, contextualization) methodol-
ogy. The complete methodology was presented in detail, including algorithms for
partial steps and the overall explanation algorithm. Detection of explanation pat-
terns, automatic validation of generated explanations, and the contextualization
of results are the main aspects of the approach. We evaluated the new Explainer
module with a quantitative expriment and a user study with participation of the
architectural domain representatives.

Our future work will be concentrated on a better analysis of explanations
(e.g., how the validation and the context classes change over time). Additionally,
we will improve each of the steps, especially by applying an improved, more
domain-oriented wording (e.g., Space Syntax) for explanations and context classes.
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