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(a) Reference image at time t . (b) Estimated disparity at time t + 1. (c) Edges used for interpolation.

(d) Sparse disparity at time t . (e) Warped, sparse disparity of (b). (f) Sparse optical flow from t to t + 1.

(g) Interpolated disparity at time t . (h) Interpolated disparity map of (e). (i) Interpolated optical flow.

Figure 1: Optical flow and stereo disparity are combined to sparse scene flow by warping. Edge-aware interpolation is used to
reconstruct a dense scene flow field.

ABSTRACT
Scene flow describes 3D motion in a 3D scene. It can either be mod-
eled as a single task, or it can be reconstructed from the auxiliary
tasks of stereo depth and optical flow estimation. While the second
method can achieve real-time performance by using real-time aux-
iliary methods, it will typically produce non-dense results. In this
representation of a basic combination approach for scene flow esti-
mation, we will tackle the problem of non-density by interpolation.

1 INTRODUCTION
The problem of scene flow estimation in computer vision is the
reconstruction of 3D geometry and 3D motion based on a sequence
of stereo images (see Figure 2). While some papers argue that a
joint estimation of geometry and motion will yield more consis-
tent results, this paper estimates scene flow by the combination
of stereo disparity and optical flow as it was already done in [12].
The sub-tasks are considered computational less expensive and the
combination itself is negligible in terms of run-time. Together with
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a considerably fast and accurate interpolation it is even possible to
reconstruct dense scene flow from stereo disparity and optical flow
(see Figure 1).

This is an extension of the already published work in [12]. We
will use the interpolation of SceneFlowFields (SFF) [14] to recon-
struct dense scene flow from the combination of stereo disparity
and optical flow. Relevant related work can be found in the original
paper [12].

2 DENSE RE-COMBINATION
Sparse Combination. Since scene flow is the description of 3D

geometry and 3D motion for every pixel of an image, it can be
represented by two vector fields consisting of the 3D position and
the 3D displacement in world space. An alternative representation
can be given in image space by optical flow, disparity, and dispar-
ity change. Given the camera intrinsics and extrinsics, these two
representations are equivalent and can be transformed into each
other. Consequently, direct computation of optical flow and dispar-
ity solves two sub-tasks of scene flow estimation. What is missing
is the change of disparity ∆dt+1t that together with the disparity
dt yields the disparity at the next time step dt+1t = dt + ∆d

t+1
t for

each pixel of the reference time step. However, a disparity map
dt+1 with reference to the next time step can be computed directly
and together with optical flow which relates corresponding pixels



ACM Computer Science in Cars Symposium, 2018, Munich, Germany R. Schuster et al.

Figure 2: Point cloud visualization of dense scene flow result.
Color indicates velocity (green: slow, red: fast).

Table 1: Comparison of different interpolation schemes. Per-
centage of outliers on KITTI training data.

Interpolation D1 D2 Fl SF Density
sparse 4.4 8.3 9.0 12.7 84.23 %
kitti 11.0 17.5 19.9 23.8 100.0 %
full 6.5 12.6 16.3 19.6 100.0 %

motion 4.9 13.2 16.7 20.4 100.0 %
disp-affine 4.9 13.2 15.5 20.8 100.0 %
disp-plane 4.9 13.5 15.5 21.2 100.0 %

between both time steps, this disparity map can be warped to the
reference frame:

dt+1t (x,y) = dt+1(x + u,y +v). (1)

(u,v)T are the optical flow components at pixel (x,y)T . Thus, we
can reconstruct scene flow from optical flow and two disparity maps.
Bi-linear interpolation is used to warp disparity values from sub-
pixel positions. The only problem is that the reconstruction will fail
if the optical flow leaves the image boundaries or where the scene
is occluded in the next time step. As a result, the reconstruction
approach will produce a non-dense scene flow field (cf. Figures 1d
to 1f).

Interpolation. The recently published SceneFlowFields [14] es-
timates scene flow by sparse-to-dense interpolation. We can utilize
the edge-aware interpolation algorithm to reconstruct dense scene
flow from the sparse combination of disparity and optical flow.
SFF interpolates scene flow in two steps. First, local planes are es-
timated based on the known scene flow to interpolate geometry.
Secondly, local affine transformations are estimated to describe the
3D motion.

Depending on the auxiliary methods that are used for optical
flow and disparity estimation, the results for these tasks are already
dense. Only the warped disparity map dt+1t is non-dense. That
leaves several options for the interpolation which we all compare
in Table 1:

• Using the default interpolation algorithm of the KITTI submis-
sion system (kitti).

• Interpolating all sub-tasks where dt+1t has gaps (full).
• Interpolating the 3D motion only (flow + disparity change)
according to local affine 3D transformation models (motion).

Table 2: Results according to KITTI Scene Flow Benchmark
[8] in percentage of outliers.

Method D1 D2 Fl SF Run-time
ISF [2] 4.5 6.0 6.2 8.1 600 s

PRSM [18] 4.3 6.7 6.7 9.0 300 s
OSF+TC [10] 5.0 6.8 7.0 9.2 3000 s
OSF18 [9] 5.3 7.1 7.4 9.7 390 s
SSF [11] 4.4 7.0 7.1 10.1 300 s
OSF [8] 5.8 7.8 7.8 10.2 3000 s

FSF+MS [16] 6.7 9.9 11.3 15.0 2.7 s
CSF [7] 6.0 10.1 13.0 15.7 80 s
SFF [14] 6.6 10.7 12.9 15.8 65 s
PRSF [17] 6.2 12.7 13.8 16.4 150 s
Ours 6.6 14.4 16.6 20.7 36 s

SGM+SF [5, 6] 6.8 15.6 21.7 25.0 2700 s
PCOF+LDOF [4] 8.5 21.0 18.3 29.3 50 s
SGM+FF+ [12] 13.4 27.8 22.8 33.6 29 s

SGM+C+NL [5, 15] 6.8 28.25 35.6 40.3 270 s
SGM+LDOF [3, 5] 6.8 28.6 39.3 43.7 86 s

• Using the affine 3D transformations to interpolate the warped
disparity only (disp-affine).

• Only interpolating the warped disparity map using a local
plane model (disp-plane).

Results. Remarkable about the different concepts of interpola-
tion is that the joint interpolation (an example result of this variant
is given in Figures 1g to 1i) produces overall the best scene flow
estimate, though the different sub-results are less accurate than
for some other interpolation strategies (see Table 1). That supports
the general paradigm that scene flow should be estimated jointly.
Further, we want to highlight that the sparse combination results
are very accurate. With the steady improvement of methods for
the auxiliary tasks, scene flow estimation by re-combination gets
better also. In this paper, we have used SPS-stereo [19] for disparity
estimation and FlowFields++ [13] for the optical flow tasks. Both
are ranked higher than the respective auxiliary methods (SGM [5]
and FF+ [1]) that have been used in the original paper [12]. Due to
that and because the interpolation algorithm we use in this paper
is more sophisticated, our dense scene flow estimate from stereo
disparity and optical flow is ranked higher in the official public
KITTI Scene Flow Benchmark [8] than the original submission as
shown in Table 2.

Run-time. The run-time of our approach consists of 29 s for
FlowFields++ [13], 2 s for each disparity map computed with SPS-st
[19], and 3 s for dense interpolation with SceneFlowFields [14].

3 CONCLUSION
Scene flow estimation by combination of stereo disparity and op-
tical flow is as fast as the auxiliary methods are. The sparse and
accurate results can be interpolated to a dense scene flow field
with competitive performance. Improvements in stereo algorithms,
optical flow estimation, and scene flow interpolation will directly
improve the combination approach as presented in this work.
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