DFKI auf der Hannover Messe 2022

30. Mai - 2. Juni 2022 in Hannover // Halle 2, Stand C39

Nach zwei Jahren als rein digitales Angebot ist die Hannover Messe in Präsenz zurückgekehrt. Das DFKI war mit Industriethemen wie Produktionszellen als Digitale Zwillinge, virtuelles Teach-in in der Mensch-Roboter-Kollaboration, Assistenzsysteme für Menschen in der Produktion, Resilienzmanagement für globale Unternehmen und mehr Wertschöpfung durch Datenprodukte dabei. Ein zweiter Schwerpunkt lag auf KI in der Medizin. Die Forschungsbereiche der DFKI-Außenstelle Lübeck demonstrierten, wie Künstliche Intelligenz bei der Tumorsegmentierung, der Ansteuerung von Prothesen oder der Optimierung bildgebender Verfahren helfen kann. Die Themen Sozialsimulation einer Pandemie, Deep Learning für individualisierte Fixationsimplantate und Datenanalyse für die Vorhersage kritischer Zustände von Intensivpatienten verstärkten den Fokus auf Medizin und Gesundheit.

Exponate und Technologien aus dem DFKI wurden auf dem Hauptstand des DFKI in Halle 2, Stand C39, dem Saarland-Gemeinschaftsstand, Halle 2, Stand B28, dem FabOS-Stand, Halle 5, Stand F54, und bei der Technologie-Initiative SmartFactory in Halle 8, Stand D18 gezeigt.

Unsere Exponate im Einzelnen

Schwerpunkt Industrielle KI

RICAIP – Verteiltes kollaboratives Arbeiten in der Shared Production

Halle 2, C39, DFKI-Hauptstand

Gespeist durch zusätzliche Sensoren wird der Digitale Zwilling einer Produktionszelle zur Eingabeschnittstelle für ein robotisches Teach-in der realen Welt: Als Partner im RICAIP-Research and Innovation Centre on Advanced Industrial Production demonstrieren DFKI und ZeMA einen kollaborativen Roboterarm, der von einer Person aus der Ferne über ein Virtual Reality Headset in Echtzeit intuitiv gesteuert werden kann. Das technologisch komplexe Szenario ermöglicht eine enge Interaktion zwischen weit entfernten Standorten und kann auch für die Fernwartung oder für die Fertigung aus der Distanz eingesetzt werden. RICAIP ist ein verteiltes internationales Exzellenzforschungszentrum mit Forschungsschwerpunkten in den Bereichen Robotik und Künstliche Intelligenz. RICAIP basiert auf einer strategischen Partnerschaft zwischen den Forschungseinrichtungen CIIRC CTU in Prag, CEITEC BUT in Brno, ZeMA und DFKI in Saarbrücken. Zu den Forschungsthemen gehört die standortübergreifende, verteilte und digitalisierte Fertigung in der Industrie 4.0.

Weitere Informationen

SPAICER – Smarte Resilienz-Services in der produzierenden Industrie

Halle 2, C39, DFKI-Hauptstand

In einer globalisierten und vernetzten Industrie stellen Störungen in der Produktion oder Unterbrechungen in der Lieferkette ein Geschäftsrisiko dar und können zu massiven finanziellen Verlusten führen. Die Fähigkeit eines Unternehmens, interne Störungen (z.B. Werkzeugverschleiß oder Qualitätsschwankungen von Rohmaterialien) und externe Veränderungen (z.B. Lieferengpässe) vorherzusehen und sich pro-aktiv anzupassen ist die „Suche nach Resilienz“. Verstärkt durch einen erheblichen Komplexitätszuwachs in der Produktion durch Industrie 4.0 wird Resilienz-Management zu einem unabdingbaren Erfolgsfaktor für die industrielle Produktion.

Das Ziel des Projektes SPAICER ist die Entwicklung von KI-basierten Smarten Resilienz-Services zur Generierung von nachvollziehbaren Handlungsempfehlungen, die es Entscheidern ermöglichen, frühzeitig sinnvolle Stabilisierungsmaßnahmen einzuleiten.

Zur Resilienz-Steigerung werden Smarte Services auf einer offenen digitalen Plattform für Unternehmen angeboten – ohne, dass diese selbst umfangreiche KI-Expertise aufbauen oder ihre Datenhoheit abgeben müssen.
 

Weitere Informationen

Intelligente Arbeitskleidung – Inertiale Bewegungserfassung im Werk oder auf Montage

Halle 2, C39, DFKI-Hauptstand

Hitachi, DFKI, Sci-Track und das Bekleidungsunternehmen Xenoma haben eine intelligente Arbeitskleidung für das Monitoring von körperlichen Aktivitäten und Arbeitsbelastungen entwickelt. Dem Team ist es gelungen, inertiale Bewegungssensoren in eine handelsübliche Arbeitsjacke zu integrieren. Damit können Arbeitsbelastungsmessungen durchgeführt werden, ohne den Träger zu stören. Gemeinsam mit Hitachi demonstriert das DFKI ein System, das die Bewegungen und die Arbeitsbelastung des Trägers erkennt, indem es Fehlinformationen ausgleicht, die durch die zusätzliche Bewegung der Kleidung entstehen. Für die Zukunft planen die Kooperationspartner die Eignung der Technologie für den Einsatz in Fabriken, an Wartungs- und Logistikarbeitsplätzen zu prüfen, und die Sicherheit und Motivation der Arbeiter in einer Vielzahl von Bereichen durch kontinuierliche Aktivitätsüberwachung zu verbessern.

Weitere Informationen

PARTAS – Personalisierbare Augmented-Reality-gestützte Werkerassistenz

Halle 2, C39, DFKI-Hauptstand

PARTAS ist ein Assistenzsystem für Menschen mit kognitiven Störungen, insbesondere in den Bereichen Gedächtnisleistung, Konzentrationsfähigkeit und Mengenverständnis. Solche Grundfertigkeiten werden im Alltag häufig gebraucht und aktuell in Werkstätten für Menschen mit Behinderung (WfbM) durch manuelle Hilfestellungen unterstützt. Diese sollen durch intuitive, personalisierbare Anleitungen auf der Grundlage von konturbasierten Instruktionen ergänzt werden.

Der Aufbau des Systems ist mobil und kann schnell in einen bestehenden Arbeitsplatz integriert werden. Ein Projektor ermöglicht die Darstellung von Instruktionen direkt in der Arbeitsebene. Einzelne Arbeitsschritte werden durch eine Kamera erkannt und von einem KI-basierten Erkennungsalgorithmus quittiert.

Dies ermöglicht die automatisierte Ausführung einer Aufgabe, eine unmittelbare Qualitätskontrolle und gibt Betreuenden mehr Zeit, um sich den individuellen Bedürfnissen der Betreuten zuzuwenden. Wie eine Evaluation zeigte, erreicht PARTAS eine sehr hohe Akzeptanz sowohl unter den Betreuten als auch bei den Betreuenden. Aufgrund der Flexibilität des Systems sind weitere Einsatzgebiete vorstellbar, beispielsweise im Gesundheitswesen oder der fertigenden Industrie.

Weitere Informationen

FabOS – Redeployment von Echtzeitanwendungen

Halle 5, Stand F54

Gezeigt wird ein einfaches Redeployment von Echtzeitanwendungen. Sollen Änderungen an Services in einer Echtzeitumgebung zur Laufzeit durchgeführt werden, müssen Strategien erarbeitet werden, um die Ausfallzeit zu minimieren. Das Exponat "Redeployment von Echtzeitanwendungen" stellt dieses Szenario dar. Auf der Basis von containerbasierter Virtualisierung und Live-Migrationsansätzen wurde eine Lösung für industrielle Anwendungen erarbeitet.

Weitere Informationen (PDF)

EVAREST – Wie KI die Lebensmittelproduktion smart macht

Halle 2, B28, Saarland-Gemeinschaftsstand

Produzenten in der Lebensmittelindustrie können zusätzliche Einnahmen erzielen, indem sie Datenprodukte erzeugen und verwerten. Daten werden zu einem sicheren, eigenständigen Handelsgut, ohne dass Know-how oder Geschäftsgeheimnisse verraten werden.

Der systemische Ansatz für souveränen Datenhandel und -analyse zur KI-basierten Entscheidungsfindung unterstützt eine Datenökonomie: Ein Broker Framework als vertrauenswürdige Dritte Partei ermöglicht das Handeln, Teilen und Verarbeiten von Daten zwischen Wirtschaftsakteuren. Elektronische Verträge garantieren dabei den Besitz und die Kontrolle von Unternehmensdatenbeständen durch die Festsetzung von Nutzungsrechten, KI-Analysemethoden und Verwendungsmöglichkeiten der Daten. Das Broker Framework realisiert einen dezentralen Datenaustausch, sowie die gemeinsame KI-basierte Analyse von Daten verschiedener Unternehmen. Somit entstehen neue Datenprodukte, die Wirtschaftsakteure bei der Entscheidungsfindung unterstützen sollen.

Weitere Informationen

SmartFactory KL – Industrial AI in der Shared Production Kaiserslautern

Halle 8, D18, SmartFactory-KL-Gemeinschaftsstand

Die SmartFactory-KL erarbeitet mit vier vernetzten Produktionsinseln die Zukunft der Fertigung. Die größte – Produktionsinsel _KUBA – wird auf der diesjährigen Hannover Messe erstmals der Weltöffentlichkeit präsentiert. Besucher können einen Modell-LKW konfigurieren, dessen Fertigung umgehend vor Ort beginnt. Auf einem pfeilschnellen Transportsystem bewegen sich die Teile des LKW (Fahrerkabine, Auflieger, Räder etc.) und werden im Zusammenwirken von autonomen Maschinenmodulen und Handarbeitsplätzen montiert. Die SmartFactory-KL zeigt so, dass Künstliche Intelligenz, Mensch und Maschine das Dreamteam der Zukunft sind, dass eine Hightechproduktion den Menschen nicht aus der Fabrik verdrängt. Er ist und bleibt der Souverän, denn im Gegensatz zu Robotern ist er in der Lage Fehler zu erkennen, Systeme zu optimieren und neue Ideen zu generieren. Die spezielle Systemarchitektur der Shared Production ermöglicht Resilienz und Nachhaltigkeit, die zukünftig über Datenplattformen wie Gaia-X organisiert werden können. Bei der SmartFactory-KL steht die herstellerübergreifende Modularität im Mittelpunkt, seit 2014 bringt sie Industrie 4.0 in die Anwendung.


Schwerpunkt KI im Gesundheitswesen

KI in der Biomedizinischen Signalverarbeitung – Wie man Signalen ihre Geheimnisse entlockt

Halle 2, C39, DFKI-Hauptstand

So vielfältig wie die Anwendungen sind auch die Anforderungen an die Systeme. Methoden der Künstlichen Intelligenz (KI) werden eingesetzt, um komplexe Zusammenhänge datengetrieben zu lernen und die Limitationen klassischer mathematischer Modelle zu überwinden. Dabei sind die Robustheit gegenüber Störungen und unvollständigen Daten sowie die Interpretierbarkeit der Algorithmen von essenzieller Bedeutung. Anhand von drei Exponaten zeigt der Forschungsbereich „Biomedizinische Signalverarbeitung“ die Leistungsfähigkeit und Vielseitigkeit von KI-Lösungen:

Handgestenerkennung
Das Beispiel der Handgestenerkennung veranschaulicht die hohe Anpassbarkeit von KI-Verfahren. Man kann die eigene Gestenerkennung trainieren und anschließend Spiele spielen. Dabei wird gezeigt, wie gut KI-Verfahren durch ein kurzes Training auf neue Anforderungen angepasst werden können und wie leistungsfähig sie selbst im Kontext eingebetteter Systeme sind.

Akustische Ereigniserkennung
Die Erkennung von Audioereignissen spielt in vielen Bereichen, von Smart-Home über (Produktions-) Überwachung bis hin zu Hörgeräten, eine wichtige Rolle. Man kann erleben, wie gut eine Vielzahl unterschiedlicher Ereignisse dank ausgeklügelter KI in Echtzeit klassifiziert werden können.

Sleep Staging
KI muss trotz vieler unbekannter Umstände robust funktionieren. Beim Sleep Staging werden EEG-Daten ausgewertet, die während des Schlafes aufgenommen werden. Die Herausforderung besteht unter anderem darin, trotz unterschiedlicher Bedingungen und Messgeräte für alle Patienten und Patientinnen zuverlässige Ergebnisse zu liefern. Anhand unzähliger EEG-Messungen wird gezeigt, wie zuverlässig und robust KI sein kann.

Weitere Informationen

KI in der medizinischen Bildverarbeitung – Deep-Learning-basierte Hirntumorsegmentierung

Halle 2, C39, DFKI-Hauptstand

Wie KI-Methoden Hirntumore in räumlichen 3D-MRT-Bildfolgen zuverlässig und zeiteffizient pixelgenau automatisiert abgrenzen können, zeigt eine Software-Demonstration zur KI-basierten Tumor-Segmentierung. Die Deep-Learning-basierte Bildanalyse ermittelt wesentliche Kenngrößen des Gehirntumors wie dessen Volumen, Position und Intensitätswerte automatisch und liefert die Grundlage für eine quantitative Auswertung und Bewertung der Entwicklung der Wucherung.

Der DFKI-Forschungsbereich „Künstliche Intelligenz in der medizinischen Bildverarbeitung“ entwickelt lernfähige medizinische Bildverarbeitungsmethoden zur Unterstützung der medizinischen Diagnostik und Therapie. In hybriden Bildverarbeitungssystemen werden Methoden der Künstlichen Intelligenz mit medizinischen Bildverarbeitungsverfahren und Visualisierungstechniken zur ärztlichen Unterstützung kombiniert.

Im Fokus stehen maschinelle Lernverfahren und Deep Learning-Netze zur automatischen Analyse und Erkennung von verschiedenen Krankheitsmustern, Läsionen, Biomarkern, Organen, Geweben etc. in medizinischen Bildern und Bildfolgen. Die Forscherinnen und Forscher untersuchen zudem die Möglichkeiten zur bildbasierten Vorhersage des individuellen Krankheitsverlaufs und der personalisierten Risikoabschätzung zur Unterstützung bei Therapieentscheidungen mit Hilfe maschineller Lernverfahren.

Weitere Informationen

Wie aus Pferden Zebras werden – Inter-Modale Bildsynthese mit Hilfe der Cycle-GAN-Architektur

Halle 2, C39, DFKI-Hauptstand

Intelligente Systeme im Gesundheitswesen bauen durch Beobachtung ihrer Umgebung und durch Auswertung von Daten Modelle auf, um Handlungen optimal berechnen zu können. Dabei müssen sie auch mit Unsicherheiten umgehen. Eine wichtige Anwendung unter Unsicherheit ist die Bildregistrierung, bei der Bereiche auf bestimmten Bildern mit Bereichen auf anderen Bildern verknüpft werden. Ein Anwendungsfall ist die Zuordnung von Organen in MRT-Bildern zu den gleichen Organen auf CT-Bildern. Ein Ansatz, die Registrierung zu verbessern, ist es, die Bilder aus einer Domäne mit einer Cycle-GAN Architektur Bildern der anderen Domäne zu synthetisieren.

Das Team aus dem Forschungsbereich „Stochastische Relationale KI“ zeigt diese Synthetisierung am Beispiel der Synthese von Pferden zu Zebras und andersherum. Besucher können live ein Schleich-Pferd oder ein Schleich-Zebra vor einer Kamera platzieren. Der Livestream auf dem Monitor zeigt das jeweils andere Tier der Aufnahme an.

Weitere Informationen

KI für die Intensivstation – Vorhersage von Risikoindikatoren für die kardiopulmonare Dekompensation

Halle 2, C39, DFKI-Hauptstand

Damit Pflegende sowie Ärztinnen und Ärzte auf Intensivstationen sich mehr auf ihre Patienten konzentrieren können, sollen Techniken der Künstlichen Intelligenz bei der Analyse der vielfältigen Patientendaten unterstützen. Hier setzt das Projekt RIDIMP des Bremer Klinikverbunds Gesundheit Nord und des DFKI-Forschungsbereichs „Cyber-Physical Systems“ an. Um aus den unzähligen Informationen sinnvoll lernen zu können, müssen diese bewertet werden. Die Medizinerinnen und Mediziner der Gesundheit Nord definieren dazu zwei numerische Scores, die sich aus vielen Einzelparametern wie Sauerstoffsättigung, Puls oder Medikamentengaben zusammensetzen und den Zustand des Kreislaufs bzw. der Atmung anhand der Daten auf einer Skala von 0 (unkritisch) bis 9 (höchst kritisch) beurteilen. Diese Werte werden wiederum verwendet, um vorliegende historische Patientendaten zu bewerten und daraus mit Techniken des maschinellen Lernens eine Vorhersage für den Wert der Scores in der Zukunft und damit für die Wahrscheinlichkeit eines Zusammenbruchs (Dekompensation) von Kreislauf oder Atmung zu implementieren.
Auf diese Weise kann aus der Vielzahl der erfassten Daten sehr präzise die Entwicklung der zwei Scores und damit der gesundheitliche Zustand der Patienten in der Zukunft prognostiziert werden. So kann das medizinische Fachpersonal frühzeitig auf drohende Probleme hingewiesen werden.

Auf der Hannover-Messe zeigen Mitarbeiter aus dem DFKI-Forschungsbereich „Cyber-Physical Systems“ ihren Prognosealgorithmus auf ausgewählten historischen Patientendaten der Intensivstation. Auf diesen Daten wird live eine Vorhersage berechnet; der Besucher kann dann vergleichen, wie gut diese Vorhersage ist. Das Exponat ist interaktiv – die Besucherinnen und Besucher können in der Zeitachse vor- und zurückgehen, den Zeitverlauf beschleunigen, verlangsamen oder anhalten.

Weitere Informationen

IIP-EXTREM – Individualisierte Implantate für die Behandlung unterer Extremitäten

Saarland-Gemeinschaftsstand Halle 2, B28

Forschende der Universität des Saarlandes und des DFKI haben eine personalisierte Therapie für Waden- oder Schienbeinbrüche entwickelt: Mit ihrem Verfahren können sie jedem Patienten das optimale Implantat auf den Knochen maßschneidern, das individuellen Belastungen standhält und die Heilung unterstützt. Hierzu kombinieren sie Methoden der Mechanik und Informatik.

Vom Bild zum 3D-Modell
Routinemäßig durchgeführte Computertomographie (CT) liefert Bilddatensätze, die für die 3D-Rekonstruktion verwendet werden können. Da jeder CT-Scan eine pixelgenaue Identifizierung von Materialien (Kortikalis, Spongiosa, Metall, Weichgewebe) erfordert, führt dies zu einem langwierigen Prozess manueller Klassifizierung durch Fachpersonal. Durch Deep Learning-Technologie kann ein Neuronales Netzwerk die Materialien auf CT-Bildern wesentlich schneller und zuverlässiger segmentieren. Aus diesen Tomogrammen wird ein Modell erstellt, das dann virtuell verarbeitet oder in gängige Formate exportiert werden kann, die von CAD-Software verwendet werden.

Das Resultat sind auf den Patienten zugeschnittene Implantate, die durch selektives Laserschmelzen oder Hochgeschwindigkeitsfräsen hergestellt werden können.


Weitere Exponate

Krisenmanagementcockpit und Krisenresilienz – Die Projekte AScore und AKRIMA

Halle 2, C39, DFKI-Hauptstand

Schnelle Krisenbewältigung erfordert die Bewahrung der Stabilität und Handlungsfähigkeit großer Teile des gesellschaftlichen Gesamtsystems. Dies bedingt flexible, zeitnahe und angemessene Reaktionen auf veränderte (Krisen-) Lagen. Die Corona-Pandemie zeigte, ebenso wie jüngste Extremwetterlagen, dass die hierfür entscheidende ständige Anpassung für die Mehrzahl der Akteure eine erhebliche Herausforderung darstellt. Mithilfe von KI können diese Informationen so aufbereitet werden, dass die entsprechenden Akteure im Krisenfall eine maßgebliche Unterstützung erhalten. Dies reicht von der einfachen Dokumentation bis hin zu simulationsgestützten Trainingsszenarien und Schulungen.

Das Krisenmanagementcockpit AScore bereitet entscheidungsrelevante Informationen durch die Integration von Smart Cities und agentenbasierter Sozialsimulation auf. Das Simulationsmodell ist dadurch in der Lage, Prognosen bezüglich der Ausbreitung von Infektionen bei bestimmten Szenarien zu treffen.

Das Projekt „AKRIMA“ greift diesen Ansatz auf und zielt auf eine Stärkung der Krisenresilienz von kritischen Infrastrukturen, Logistikketten sowie Behörden und Organisationen mit Sicherheitsaufgaben durch eine simulationsgestützte Verbesserung von Krisenreaktionsmechanismen.

Weitere Informationen

Zweiarmiger Tauchroboter „Cuttlefish” – Interventions-AUV für die autonome Unterwassermanipulation

Halle 2, C39, DFKI-Hauptstand

Von der Wartung maritimer Infrastrukturen über die Bergung von Munitionsaltlasten bis hin zur Beseitigung von Plastikmüll – viele Arbeiten in tiefen Gewässern sind nicht nur aufwendig und teuer, sondern auch gefährlich für den Menschen. Der Trend geht daher zum Einsatz autonomer Unterwasserfahrzeuge (AUVs), die über lange Zeiträume im Wasser verbleiben und dort dank Künstlicher Intelligenz (KI) komplexe Aufgaben bewältigen können.

Im Verbund mit einem weltweiten Netzwerk aus Partnern der Industrie und Wissenschaft entwickelt das DFKI Robotics Innovation Center eine neue Generation autonomer Unterwasserfahrzeuge (AUVs). Die robusten Systeme sind dank Künstlicher Intelligenz sowie State-of-the-Art-Verfahren der Navigation in der Lage, über lange Zeiträume im Wasser zu verbleiben und dort komplexe Aufgaben zu bewältigen. Ein zentrales Forschungsfeld ist die Manipulation und Handhabung maritimer Infrastrukturen und Operationsumgebungen durch autonome Roboter. Ein System, mit dem der DFKI-Forschungsbereich die teilautonome Unterwassermanipulation bereits erfolgreich demonstrieren konnte, ist das im Projekt Mare-IT entwickelte AUV "Cuttlefish". Dieser frei in der Wassersäule positionierbare Interventionsroboter verfügt über zwei an der Bauchseite angebrachte, tiefseetaugliche Greifsysteme, mit denen er Objekte unter Wasser flexibel manipulieren kann.

Weitere Informationen

Open6GHub – 6G für Mensch, Umwelt und Gesellschaft

Halle 2, C39, DFKI-Hauptstand

Ziel des „Open6GHub” ist es, im europäischen Kontext Beiträge zu einem globalen 6G-Harmonisierungsprozess und -Standard zu liefern, der die Interessen Deutschlands im Sinne gesellschaftlicher Prioritäten (Nachhaltigkeit, Klimaschutz, Datenschutz, Resilienz) berücksichtigt und dabei die Wettbewerbsfähigkeit der Unternehmen, die technologische Souveränität sowie die Position Deutschlands und Europas im internationalen Wettbewerb um 6G stärkt.

Der Open6GHub wird zur Entwicklung einer 6G Gesamtarchitektur, aber auch von End-to-end-Lösungen unter anderem in folgenden Bereichen beitragen: erweiterte Netzwerktopologien mit hochagiler sogenannter organischer Vernetzung, Security- und Resilienz, kabellose und photonische Übertragungsverfahren, Sensorfunktionalitäten in den Netzen und deren intelligente Nutzung und Weiterverarbeitung und anwendungsspezifische Radioprotokolle.

Weitere Informationen


Diskussionen & Vorträge

„Die Zukunft von Industrie 4.0“

30.05.2022, 15:15-16:05 Uhr, Tech Transfer Conference Stage, Halle 2, A60

15:00-15:15 Uhr: Impulsvortrag von Prof. Dr. Peter Liggesmeyer, Fraunhofer IESE/Plattform Industrie 4.0
15:15-16:05 Uhr: Podiumsdiskussion mit

  • Prof. Henning Kagermann, acatech
  • Prof. Wolf-Dieter Lukas, BMBF, Staatssekretär a.D.
  • Prof. Wolfgang Wahlster, DFKI Chief Executive Advisor

Moderation: Dr. Tabea Golgath, LINK – KI und Kultur, Stiftung Niedersachsen

„Nachhaltige KI aus Niedersachsen für die Unternehmen der Zukunft“

31.05.2022, 15:00-16:00 Uhr, Tech Transfer Conference Stage, Halle 2, A60

Impulsvorträge und Podiumsdiskussion von und mit:

  • Dr. Sebastian Pütz, Planbasierte Robotersteuerung, DFKI, Osnabrück
  • Prof. Dr.-Ing. Daniel Sonntag, Interactive Machine Learning, DFKI, Oldenburg
  • Prof. Dr. Oliver Thomas, Smart Enterprise Engineering, DFKI, Osnabrück
  • Prof. Dr. Oliver Zielinski, Marine Perception, DFKI, Oldenburg

Moderation:

  • Reinhard Karger, DFKI Unternehmenssprecher
  • Simone Wiegand, DFKI Unternehmenskommunikation Niedersachsen

“The Black Box Experience – KI, Emotionen und Musik”

31.05.2022, 17:30 - 17:40 Uhr, Tech Transfer Conference Stage, Halle 2, Stand A

Dr. Stephan Baumann, Smarte Daten & Wissensdienste, DFKI

Mehr Informationen

Besuchen Sie uns: Halle 2, Stand C39

Kontakt

Reinhard Karger, M.A.
DFKI Unternehmenssprecher

Tel.: +49 681 85775 5253
Mobil: +49 151 1567 4571

Deutsches Forschungszentrum für Künstliche Intelligenz
German Research Center for Artificial Intelligence