- Smart sensors provide insight into the learning process
- AR enables collaboration in the classroom
- Joint research with Japan
- Economics Minister Wolf visits the new learning lab
Sensor systems measure learning success
The "Living Lab" studies various technologies, for example, eye-tracking, language and gesture recognition systems, and Augmented Reality (AR) to determine how these may be practically applied in learning and working scenarios. Educational researchers and professional educators analyze the data and use it for the diagnostics of learning states and progress in learning. For example, the measurement of facial temperature using an infrared camera reveals the stress level of the learner. Combining such data sources with intelligent algorithms, like those in Deep Learning methods, enables totally new insights into individual and group dynamics in the learning process. Possible recommendations for action by the teacher can then be derived. In addition, the analysis data can be used to form opinions about the cognitive state of the learner. For example, in case of increased stress or strain, individual approaches for improving the learning success can be proposed.
Furthermore, iQL lab studies, most of which are planned as single-user studies, can be carried out simultaneously in a realistic, application-oriented environment in the iQL lab with a large group. This minimizes the time required and reduces external influences.
Prof. Dr. Andreas Dengel, head of department, Smart Data & Knowledge Services and spokesperson for DFKI Kaiserslautern explains: "The iQL is a brand new instrumented learning environment for participative and individual teaching and learning experiments. Expanding on already established prototypes, these technologies should reveal fascinating new developments in learning. We want to investigate the potential benefits of digital media in the field of education and training by combining different forms of interaction with multimedial learning objectives – while making learning more diverse, more practice-oriented and encouraging curiosity about content. In addition, we want to study the impact of such digital learning environments in comparison to traditional media with regard to mental and cognitive stress situations or for increasing knowledge."
Prof. Dr. Jochen Kuhn, Head of WG Didactics of Physics at Kaiserslautern University of Technology: "Interactive, sensor-assisted experiments under realistic conditions can provide insights, for example, into individual learning behaviors and the learning success of the students. For lab experiments in the natural sciences, we use smart glasses and other devices to display supplemental information into the learner's field of vision by means of augmented reality. The physical dimensions, for example, may be entered into a virtual diagram that "hovers" above the actual structure. Unseen variables such as temperature and voltage or even the changes in speed and acceleration are made visible by means of color and arrow displays directly on the experimental objects on the basis of actual measured values in real time."
More effective research in the natural sciences
In addition to the augmented experimentation, students in the new lab can interact with virtual objects like 3-D models and diagrams and vividly acquire descriptive knowledge. Several students can be occupied with an object at the same time. Such teamwork improves the imagination and enhances long term memory. New kinds of interactive possibilities allow students to intuitively navigate digital textbooks, search, and make notes using fingers or voice input. Multi-touch whiteboards provide teachers the chance to share digital information directly with one, several, or all students. When connected to the teacher's and the student's work stations, it can be used to pass content back and forth between all actors using simple gestures. The "Display As A Service - DAAS" technology developed at DFKI used here has since become established by the spin-off company called Pxio.
Scientific exchange with Japan
Another research highlight at iQL is the analysis of learning behavior in subjects having different linguistic and cultural backgrounds. This research is the reason for a close cooperation with colleagues in Japan, developing joint learning experiments that are subsequently evaluated in both the iQL and in a comparable learning lab located at the DFKI- affiliated Osaka Prefecture University. The aim is to study the differences and similarities in learning behaviors in Germany and Japan.
Premiere at "Nacht, die Wissen schafft – The Night of Science"
Participating in the "Nacht, die Wissen schafft" (English: Knowledge Creation Night), the iQL Lab was open to the public for the first time in Kaiserslautern on April 13, 2018. Prof. Dr. Konrad Wolf, Minister for Science, Education, and Culture in the state of Rhineland-Palatinate remarked on the innovative approach: "Universities have an important function in the digitalization movement: They are at the forefront of technological innovation, they are the home of research and development, and they are driving the digital transformation. A digital education and the acquisition of digital skills are of major importance to us in Rhineland-Palatinate. These are decisive in determining career and lifetime opportunities. Digital learning enables content, paths, and methods to be tailored to the needs of the individual in these times of increasing social diversity and business differentiation. Digital teaching and learning are changing the classroom and enabling a brand new world in which to learn. The iQL Lab provides outstanding conditions conducive to study and discovery."
iQL and CeBIT 2018
Research scientists from iQL demonstrate how eye-tracker and augmented reality are implemented in different learning and working scenarios at CeBIT 2018 in Hannover, Germany. Experience the latest sensor technologies and learn about the future of learning with the various demonstrators at the DFKI exhibit stand (Hall 27, Stand F62) from June 11-15, 2018.
Kontakt: Prof. Dr. Prof. h.c. Andreas Dengel |
Prof. Dr. Jochen Kuhn |
Press Contact: Christian Heyer |