Skip to main content Skip to main navigation

Publication

MuLVE, A Multi-Language Vocabulary Evaluation Data Set

Anik Jacobsen; Salar Mohtaj; Sebastian Möller
In: Proceedings of the Language Resources and Evaluation Conference. International Conference on Language Resources and Evaluation (LREC-2022), June 21-26, Marseille, France, France, Pages 673-679, European Language Resources Association, 6/2022.

Abstract

Vocabulary learning is vital to foreign language learning. Correct and adequate feedback is essential to successful and satisfying vocabulary training. However, many vocabulary and language evaluation systems perform on simple rules and do not account for real-life user learning data. This work introduces Multi-Language Vocabulary Evaluation Data Set (MuLVE), a data set consisting of vocabulary cards and real-life user answers, labeled indicating whether the user answer is correct or incorrect. The data source is user learning data from the Phase6 vocabulary trainer. The data set contains vocabulary questions in German and English, Spanish, and French as target language and is available in four different variations regarding pre-processing and deduplication. We experiment to fine-tune pre-trained BERT language models on the downstream task of vocabulary evaluation with the proposed MuLVE data set. The results provide outstanding results of > 95.5 accuracy and F2-score. The data set is available on the European Language Grid.

More links