Skip to main content Skip to main navigation

Publications

Displaying results 41 to 50 of 576.
  1. Lukas Weber; Lukas Sommer; Julian Oppermann; Alejandro Molina; Kristian Kersting; Andreas Koch

    Resource-Efficient Logarithmic Number Scale Arithmetic for SPN Inference on FPGAs

    In: International Conference on Field-Programmable Technology. International Conference on Field Programmable Technology (FPT-2019), December 9-13, Tianjin, China, Pages 251-254, IEEE, 2019.

  2. Sophie F. Jentzsch; Patrick Schramowski; Constantin A. Rothkopf; Kristian Kersting

    Semantics Derived Automatically from Language Corpora Contain Human-like Moral Choices

    In: Vincent Conitzer; Gillian K. Hadfield; Shannon Vallor (Hrsg.). Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. AAAI Conference on Artificial Intelligence (AAAI-2019), January 27-28, Honolulu, HI, USA, Pages 37-44, ACM, 2019.

  3. Fabrizio Ventola; Karl Stelzner; Alejandro Molina; Kristian Kersting

    Random Sum-Product Forests with Residual Links

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/1908.03250, Pages 0-10, arXiv, 2019.

  4. Alejandro Molina; Antonio Vergari; Karl Stelzner; Robert Peharz; Pranav Subramani; Nicola Di Mauro; Pascal Poupart; Kristian Kersting

    SPFlow: An Easy and Extensible Library for Deep Probabilistic Learning using Sum-Product Networks

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/1901.03704, Pages 0-10, arXiv, 2019.

  5. Robert Peharz; Antonio Vergari; Karl Stelzner; Alejandro Molina; Martin Trapp; Xiaoting Shao; Kristian Kersting; Zoubin Ghahramani

    Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning

    In: Amir Globerson; Ricardo Silva (Hrsg.). Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence. Conference in Uncertainty in Artificial Intelligence (UAI-2019), July 22-25, Tel Aviv, Israel, Pages 334-344, Proceedings of Machine Learning Research, Vol. 115, AUAI Press, 2019.

  6. Claas Völcker; Alejandro Molina; Johannes Neumann; Dirk Westermann; Kristian Kersting

    DeepNotebooks: Deep Probabilistic Models Construct Python Notebooks for Reporting Datasets

    In: Peggy Cellier; Kurt Driessens (Hrsg.). Machine Learning and Knowledge Discovery in Databases. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD-2019), International Workshops of ECML PKDD 2019, Proceedings, Part I, September 16-20, Würzburg, Germany, Pages 28-43, Communications in Computer and Information Science, Vol. 1167, Springer, 2019.

  7. Michael Benedikt; Kristian Kersting; Phokion G. Kolaitis; Daniel Neider

    Logic and Learning (Dagstuhl Seminar 19361)

    In: Dagstuhl Reports, Vol. 9, No. 9, Pages 1-22, Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 2019.

  8. Stefan Fischer; Martin Leucker; Christoph Lüth; Thomas Martinetz; Raimund Mildner; Dirk Nowotka; Frank Steinicke

    KI-SIGS: Artificial Intelligence for the Northern German Health Ecosystem

    In: Digitale Welt, Vol. 4, Pages 49-54, Springer Verlag, 12/2019.

  9. Manisha Luthra; Boris Koldehofe; Ralf Steinmetz

    Transitions for Increased Flexibility in Fog Computing: A Case Study on Complex Event Processing

    In: Informatik Spektrum, Vol. 42, No. 4, Pages 244-255, Springer, 2019.

  10. Badarinath Katti; Christiane Plociennik; Michael Schweitzer

    A Jumpstart Framework for Semantically Enhanced OPC-UA

    In: KI - Künstliche Intelligenz, German Journal on Artificial Intelligence - Organ des Fachbereiches "Künstliche Intelligenz" der Gesellschaft für Informatik e.V. (KI), Vol. 33, No. 2, Pages 131-140, Springer, 2019.