Skip to main content Skip to main navigation

Publications

 

Due to maintenance work, it is currently not possible to search for publications by author.

Displaying results 21 to 30 of 533.
  1. Saket Joshi; Kristian Kersting; Roni Khardon

    Generalized First Order Decision Diagrams for First Order Markov Decision Processes

    In: Craig Boutilier (Hrsg.). IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence. International Joint …

  2. Zhao Xu; Kristian Kersting; Volker Tresp

    Multi-Relational Learning with Gaussian Processes

    In: Craig Boutilier (Hrsg.). IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence. International Joint …

  3. Novi Quadrianto; Kristian Kersting; Mark D. Reid; Tibério S. Caetano; Wray L. Buntine

    Kernel Conditional Quantile Estimation via Reduction Revisited

    In: Wei Wang; Hillol Kargupta; Sanjay Ranka; Philip S. Yu; Xindong Wu (Hrsg.). ICDM 2009, The Ninth IEEE International Conference on Data Mining. IEEE …

  4. Christian Thurau; Kristian Kersting; Christian Bauckhage

    Convex Non-negative Matrix Factorization in the Wild

    In: Wei Wang; Hillol Kargupta; Sanjay Ranka; Philip S. Yu; Xindong Wu (Hrsg.). ICDM 2009, The Ninth IEEE International Conference on Data Mining. IEEE …

  5. Marion Neumann; Kristian Kersting; Zhao Xu; Daniel Schulz

    Stacked Gaussian Process Learning

    In: Wei Wang; Hillol Kargupta; Sanjay Ranka; Philip S. Yu; Xindong Wu (Hrsg.). ICDM 2009, The Ninth IEEE International Conference on Data Mining. IEEE …

  6. Matthew Hoffman; Nando de Freitas; Arnaud Doucet; Jan Peters

    An Expectation Maximization Algorithm for Continuous Markov Decision Processes with Arbitrary Reward

    In: David A. Van Dyk; Max Welling (Hrsg.). Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics. …

  7. Jan Peters; Jun Morimoto; Russ Tedrake; Nicholas Roy

    Robot learning [TC Spotlight]

    In: IEEE Robotics & Automation Magazine, Vol. 16, No. 3, Pages 19-20, IEEE, 2009.

  8. Hirotaka Hachiya; Takayuki Akiyama; Masashi Sugiyama; Jan Peters

    Adaptive importance sampling for value function approximation in off-policy reinforcement learning

    In: Neural Networks, Vol. 22, No. 10, Pages 1399-1410, Elsevier, 2009.

  9. Marc Peter Deisenroth; Carl Edward Rasmussen; Jan Peters

    Gaussian process dynamic programming

    In: Neurocomputing, Vol. 72, No. 7-9, Pages 1508-1524, Elsevier, 2009.

  10. Duy Nguyen-Tuong; Matthias W. Seeger; Jan Peters

    Model Learning with Local Gaussian Process Regression

    In: Advanced Robotics, Vol. 23, No. 15, Pages 2015-2034, Taylor & Francis Online, 2009.