Skip to main content Skip to main navigation

Workshop: Erklärbare und interpretierbare Künstliche Intelligenz/Machine Learning

| Kaiserslautern

16. November 2023 - 17. November 2023, Kaiserslautern

Adobe Stock Photo© everythingpossible – stock.adobe.com

In Kaiserslautern gibt es eine einzigartige Ballung von mathematisch-informatischen Kompetenzen, die in zahlreichen Forschungsprojekten in Bereichen wie Machine Learning, Artificial Intelligence und Deep Learning genutzt werden.

Bist Du an den Themen „erklärbare und interpretierbare KI/ML“ interessiert oder arbeitest Du schon auf dem Gebiet und suchst eine Möglichkeit zum Austausch und zur Diskussion? Dann ist dieser Workshop genau richtig für Dich!

Die Abteilung „Finanzmathematik“ des Fraunhofer ITWM, das DFKI und die Abteilung „Data Science“ des  Fraunhofer IESE bieten einen Workshop zum Thema „Erklärbare und interpretierbare KI/ML“ an.

Hier hast Du die Möglichkeit, Fragestellungen und erste Forschungsergebnisse aus den Bereichen KI und ML zu präsentieren.

Dies ist ein Workshop im Rahmen des Leistungszentrums Simulations- und Software-basierte Innovation.

Programm

Programm folgt

Datum

16. November 2023  -  17. November 2023

VerAnstaltungsort und -zeit

Der Workshop wird in Kaiserslautern stattfinden. Genauere Informationen folgen, sobald das detailierte Programm steht.

Sprache

Englisch

Anmeldung und Call For Presentations

Bitte registrieren Sie sich mit diesem Formular.
Wir freuen uns über zahlreiche Teilnahme sowie vielfältige Einreichungen von Präsentationen und wissenschaftlichen Postern.
Anmeldeschluss zum Einreichen der Programmpunkte (Vortrag, Poster) ist der 30.09.2023!

Geplante Themenschwerpunkte im Workshop-Programm

Das Thema „Erklärbare und interpretierbare KI/ML“ ist derzeit von großem Interesse, da Künstliche Intelligenz und Maschinelles Lernen zunehmend in verschiedenen Bereichen eingesetzt werden. Allerdings ist es oft schwierig, die von diesen Systemen getroffenen Entscheidungen zu verstehen und nachzuvollziehen. Dies kann zu Bedenken hinsichtlich der Transparenz und Verantwortlichkeit von KI/ML führen.

Daher ist die kontinuierliche Forschung zu „erklärbarer und interpretierbarer KI/ML“ von großer Bedeutung.

Es gibt verschiedene Techniken und Methoden, um die von KI/ML-Systemen getroffenen Entscheidungen zu erklären und zu interpretieren. Dieser Workshop bietet eine Plattform, um die laufenden Entwicklungen und bewährten Verfahren in diesem Bereich zu erkunden und zu diskutieren, wie wir sicherstellen können, dass KI/ML-Systeme transparent und verantwortungsvoll eingesetzt werden.

Folgende Schwerpunkte sind geplant:

  • Techniken zur Interpretation von Modellen des Maschinellen Lernens
  • Erklärbare KI/ML für die Entscheidungsfindung
  • Human-Centered Design für erklärbare KI/ML
  • Evaluierung der Erklärbarkeit von KI/ML-Modellen
  • Fallstudien zu erklärbarer und interpretierbarer KI/ML
  • Ethische Erwägungen bei erklärbarer und interpretierbarer KI/ML

 

Beispiele Anwendungsfelder von „erklärbarer und interpretierbarer KI/ML“

Erklärbare KI (Explainable AI, XAI) spielt eine entscheidende Rolle im Bereich der Medizin, da diese transparente und interpretierbare Einblicke in KI-gesteuerte Diagnosen und Behandlungsempfehlungen bietet. Da die KI-Modelle immer ausgefeilter werden, können sie Muster und Korrelationen in medizinischen Daten erkennen, die für menschliche Experten nicht sofort erkennbar sind. Allerdings gibt die „Black Box“
einiger KI-Algorithmen jedoch Anlass zu Bedenken hinsichtlich des Vertrauens und der Verantwortlichkeit bei der Entscheidungsfindung im Gesundheitswesen. Durch den Einsatz von XAI Techniken können Mediziner die Gründe für die KI-Vorhersagen verstehen und wertvolle Einblicke in Patientenergebnisse und Behandlungspläne erhalten. Diese Transparenz steigert nicht nur die Genauigkeit und Zuverlässigkeit von KI-gestützten medizinischen Entscheidungen, sondern ermöglicht es Ärzten auch fundiertere Entscheidungen zu treffen und den Patienten klarere Erklärungen zu ihrem Gesundheitszustand zu geben.

Im Bereich der Landwirtschaft erweist sich XAI als wichtiges Instrument zur Optimierung der landwirtschaftlichen Praktiken und zur Sicherstellung einer nachhaltigen Lebensmittelproduktion. Da zunehmend KI-Technologien zur Analyse komplexer Datensätze in der Landwirtschaft integriert werden, wird die Fähigkeit, KI-Modelle zu interpretieren, für eine effektive Entscheidungsfindung unumgänglich. Durch den Einsatz von XAI können Landwirte Transparenz bei der Vorhersage von Ernteerträgen, Schädlings- und Krankheitsausbrüchen sowie der optimalen Zuweisung von Ressourcen schaffen. Mit dem Verständnis der zugrunde liegenden Faktoren, die diese KI-gesteuerten Erkenntnisse beeinflussen, können die Landwirte gezielte Eingriffe und Techniken der Präzisionslandwirtschaft implementieren. Darüber hinaus verbessert erklärbare KI die Kommunikation zwischen KI-Systemen und Landwirten, die das Vertrauen und eine breite Akzeptanz von KI-gesteuerten Lösungen in der Landwirtschaft fördner. Infolgedessen erleichtert XAI intelligentere landwirtschaftliche Praktiken, welche zu höherer Produktivität, geringeren Umweltauswirkungen und widerstandsfähigeren Lebensmittelsystemen führen.

Im Zuge der Digitalisierung von Buchhaltungsprozessen ergeben sich neue Möglichkeiten durch den Einsatz maschineller Lerntechniken, aber Algorithmen zur Entscheidungsunterstützung auf Finanz- und Buchhaltungsdaten müssen jedoch sehr hohe ethischen und regulatorischen Anforderungen in Bezug auf Transparenz und Interpretierbarkeit erfüllen. Für eine effiziente Überprüfung von Abrechnungstransaktionen und zur Buchhaltungsprüfung werden Algorithmen zur Anomalieerkennung eingesetzt, um nach Datenfehlern zu suchen und Betrug zu erkennen. In praktischen Anwendungen sind diese Anomalien oft vorher nicht vollständig bekannt. Stattdessen basiert die Erkennung auf dem Erlernen der zugrunde liegenden Muster in den Daten. Interpretierbare Techniken helfen, diese Muster und die Entscheidungsgrenzen des Algorithmus zu verstehen, um tatsächliche Anomalien effizienter zu erkennen, den Entscheidungsträgern den angemessenen Umgang mit Anomalien zu erleichtern und mit dem KI-System zu kommunizieren. Auf diese Weise ermöglicht XAI einen kollaborativen Lernprozess von Entscheidungsträgern und KI-Systemen und stärkt das Vertrauen in die Ergebnisse. 

Kontakt

Reinhard Karger M.A.
Unternehmenssprecher DFKI

Tel.: +49 681 85775 5253


Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI)
Saarland Informatics Campus
Stuhlsatzenhausweg 3
66123 Saarbrücken
Deutschland