Skip to main content Skip to main navigation

Publikation

Autonomous reinforcement learning with hierarchical REPS

Christian Daniel; Gerhard Neumann; Jan Peters
In: The 2013 International Joint Conference on Neural Networks. International Joint Conference on Neural Networks (IJCNN-2013), August 4-9, Dallas, TX, USA, Pages 1-8, IEEE, 2013.

Zusammenfassung

Future intelligent robots will need to interact with uncertain and changing environments. One key aspect to allow robotic agents to adapt to such situations is to enable them to learn multiple solution strategies to one problem, such that the agent can remain flexible and employ alternative solutions even if the preferred solution is no longer viable. We propose a unifying framework that allows the use of hierarchical policies and which can, thus, learn multiple solutions at once. We build our method on the basis of relative entropy policy search, an information theoretic policy search approach to reinforcement learning, and evaluate our method on a real robot system.

Weitere Links