Publikation
New Parameters Based on Ground Reaction Forces for Monitoring Rehabilitation Following Tibial Fractures and Assessment of Heavily Altered Gait
Christian Wolff; Elke Warmerdam; Tim Dahmen; Tim Pohlemann; Philipp Slusallek; Bergita Ganse
In: Sensors, Vol. 25, No. 8, Pages 0-0, MDPI, 4/2025.
Zusammenfassung
Instrumented insoles have created opportunities for patient monitoring via long-term recordings of ground reaction forces (GRFs). As the GRF curve is altered in patients after lower-extremity fracture, parameters defined on established curve landmarks often cannot be used to monitor the early rehabilitation process. We aimed to screen several new GRF curve-based parameters for suitability and hypothesized an interrelation with days after surgery. In an observational longitudinal study, data were collected from 13 patients with tibial fractures during straight walking at hospital visits using instrumented insoles. Parametrized curves were fitted and regression analyses conducted to determine the best fit, reflected in the highest R2-value and lowest fitting error. A Wald Test with t-distribution was employed for statistical analysis. Strides were classified as regular or non-regular, and changes in this proportion were analyzed. Among the 12 parameters analyzed, those with the highest R2-values were the mean force between inflection points (R2 = 0.715, p < 0.001, t42 = 9.89), the absolute time between inflection points (R2 = 0.707, p < 0.001, t42 = 9.83), and the highest overall force (R2 = 0.722, p < 0.001, t42 = 10.05). There was a significant increase in regular strides on both injured (R2 = 0.427, p < 0.001, t42 = 5.83) and healthy (R2 = 0.506, p < 0.001, t42 = 6.89) sides. The proposed parameters and assessment of the regular stride ratio enable new options for analyses and monitoring during rehabilitation after tibial shaft fractures. They are robust to pathologic GRF curves, can be determined independently from spatiotemporal coherence, and thus might provide advantages over established methods.