Publikation
Dilated Temporal Fully-Convolutional Network for Semantic Segmentation of Motion Capture Data
Noshaba Cheema; Somayeh Hosseini; Janis Sprenger; Erik Herrmann; Han Du; Klaus Fischer; Philipp Slusallek
In: Thabo Beeler; Nils Thuerey; Melina Skouras (Hrsg.). Eurographics/ ACM SIGGRAPH Symposium on Computer Animation - Posters. ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA-2018), July 11-13, Paris, France, Pages 5-6, SCA Posters '18, ISBN 978-3-03868-070-3, The Eurographics Association, 2018.
Zusammenfassung
Semantic segmentation of motion capture sequences plays a key part in many data-driven motion synthesis frameworks. It is a preprocessing step in which long recordings of motion capture sequences are partitioned into smaller segments. Afterwards, additional methods like statistical modeling can be applied to each group of structurally-similar segments to learn an abstract motion manifold. The segmentation task however often remains a manual task, which increases the effort and cost of generating large-scale motion databases. We therefore propose an automatic framework for semantic segmentation of motion capture data using a dilated temporal fully-convolutional network. Our model outperforms a state-of-the-art model in action segmentation, as well as three networks for sequence modeling. We further show our model is robust against high noisy training labels.
Projekte
- DISTRO - Distributed 3D Object Design
- Hybr-iT - Hybride und intelligente Mensch-Roboter-Kollaboration - Hybride Teams in wandlungsfähigen, cyber-physischen Produktionsumgebungen
- REACT - Autonomes Fahren: Modellierungs-, Lern- und Simulationsumgebung für das Fußgängerverhalten in kritischen Verkehrssituationen