Publikation
THOR-Net: End-to-End Graformer-Based Realistic Two Hands and Object Reconstruction With Self-Supervision
Ahmed Tawfik Aboukhadra; Jameel Malik; Ahmed Elhayek; Nadia Robertini; Didier Stricker
In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE Winter Conference on Applications of Computer Vision (WACV-2023), January 3-7, Waikoloa, Hawaii, USA, Pages 1001-1010, IEEE, 2023.
Zusammenfassung
Realistic reconstruction of two hands interacting with objects is a new and challenging problem that is essential for building personalized Virtual and Augmented Reality environments. Graph Convolutional networks (GCNs) allow for the preservation of the topologies of hands poses and shapes by modeling them as a graph. In this work, we propose the THOR-Net which combines the power of GCNs, Transformer, and self-supervision to realistically reconstruct two hands and an object from a single RGB image. Our network comprises two stages; namely the features extraction stage and the reconstruction stage. In the features extraction stage, a Keypoint RCNN is used to extract 2D poses, features maps, heatmaps, and bounding boxes from a monocular RGB image. Thereafter, this 2D information is modeled as two graphs and passed to the two branches of the reconstruction stage. The shape reconstruction branch estimates meshes of two hands and an object using our novel coarse-to-fine GraFormer shape network. The 3D poses of the hands and objects are reconstructed by the other branch using a GraFormer network. Finally, a self-supervised photometric loss is used to directly regress the realistic textured of each vertex in the hands' meshes. Our approach achieves State-of-the-art results in Hand shape estimation on the HO3D dataset (10.0mm) exceeding ArtiBoost (10.8mm). It also surpasses other methods in hand pose estimation on the challenging two hands and object (H2O) dataset by 5mm on the left-hand pose and 1 mm on the right-hand pose. The code base of THOR-Net will be released soon under https://github.com/ATAboukhadra/THOR-Net.
Projekte
- FLUENTLY - Fluently - the essence of human-robot interaction
- GreifbAR - Greifbare Realität - geschickte Interaktion von Benutzerhänden und -fingern mit realen Werkzeugen in Mixed-Reality Welten