Skip to main content Skip to main navigation
Eingebettete Intelligenz Headerbild© Adobe Stock

Eingebettete Intelligenz

Publikationen

Seite 1 von 2.

  1. Markus Goldstein

    Anomaly Detection in Large Datasets

    PhD-Thesis, Technische Universität Kaiserslautern, ISBN 978-3-8439-1572-4, Dr. Hut, München, 2/2014.

  2. Markus Goldstein

    Anomaly Detection in Large Datasets

    PhD-Thesis, DFKI, 2014.

  3. Markus Goldstein

    Anomaly Detection

    In: Markus Hofmann; Ralf Klinkenberg. RapidMiner: Data Mining Use Cases and Business Analytics Applications. Pages 367-394, Data Mining and Knowledge Discovery, ISBN 978-1-48-220549-7, Chapman and Hall/CRC, 10/2013.

  4. Mennatallah Amer; Markus Goldstein; Slim Abdennadher

    Enhancing One-class Support Vector Machines for Unsupervised Anomaly Detection

    In: Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description (ODD). International Conference on Knowledge Discovery and Data Mining (KDD-2013), August 11-14, Chicago, IL, USA, Pages 8-15, ISBN 978-1-4503-2335-2, ACM, New York, NY, USA, 8/2013.

  5. Johann Gebhardt; Markus Goldstein; Faisal Shafait; Andreas Dengel

    Document Authentication using Printing Technique Features and Unsupervised Anomaly Detection

    In: Proceedings of the 12th International Conference on Document Analysis and Recognition. International Conference on Document Analysis and Recognition (ICDAR-2013), 12th, August 25-28, Washington, DC, USA, Pages 479-483, ISBN 978-0-7695-4999-3, IEEE Computer Society, 8/2013.

  6. Markus Goldstein; Stefan Asanger; Matthias Reif; Andrew Hutchinson

    Enhancing Security Event Management Systems with Unsupervised Anomaly Detection

    In: Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods. International Conference on Pattern Recognition Applications and Methods (ICPRAM-2013), February 15-18, Barcelona, Spain, Pages 530-538, ISBN 978-989-8565-41-9, SciTePress, 2/2013.

  7. Markus Goldstein

    FastLOF: An Expectation-Maximization based Local Outlier Detection Algorithm

    In: Proceedings of the 21st International Conference on Pattern Recognition. International Conference on Pattern Recognition (ICPR-2012), 21st, November 11-15, Tsukuba, Japan, Pages 2282-2285, ISBN 978-4-9906441-1-6, IEEE, 11/2012.

  8. Markus Goldstein; Andreas Dengel

    Histogram-based Outlier Score (HBOS): A fast Unsupervised Anomaly Detection Algorithm

    In: Stefan Wölfl (Hrsg.). KI-2012: Poster and Demo Track. German Conference on Artificial Intelligence (KI-2012), 35th, September 24-27, Saarbrücken, Germany, Pages 59-63, Online, 9/2012.

  9. Mennatallah Amer; Markus Goldstein

    Nearest-Neighbor and Clustering based Anomaly Detection Algorithms for RapidMiner

    In: Simon Fischer; Ingo Mierswa (Hrsg.). Proceedings of the 3rd RapidMiner Community Meeting and Conferernce (RCOMM 2012). RapidMiner Community Meeting and Conference (RCOMM-2012), August 28-31, Budapest, Hungary, Pages 1-12, ISBN 978-3-8440-0995-8, Shaker Verlag GmbH, Aachen, 8/2012.

  10. Matthias Reif; Faisal Shafait; Markus Goldstein; Thomas Breuel; Andreas Dengel

    Automatic classifier selection for non-experts

    In: Pattern Analysis and Applications (PAA), Vol. July 2012, Pages 1-14, Springer-Verlag, 7/2012.

Kontakt

Sekretariat:
Shannon Kittrell, B.A.
Tel.: +49 631 20575 4010

Deutsches Forschungszentrum für
Künstliche Intelligenz GmbH (DFKI)
Forschungsbereich Eingebettete Intelligenz
Trippstadter Str. 122
67663 Kaiserslautern
Deutschland