Die Validierung von Systemen in sicherheitsrelevanten Situationen ist ein inhärent schwieriges Problem, wenn deren Verhalten über Lernalgorithmen trainiert wurde. Der subsymbolische Operationsmodus erlaubt keine ausreichende Abstraktion oder Repräsentation um Korrektheitsbeweise zu führen. Die Zielsetzung des Projektes VeryHuman ist es, die nötigen Abstraktionsebenen durch Beobachtung und Analyse des zweibeinigen Laufens eines humanoiden Roboters zu synthetisieren. Die zu entwickelnde Theorie dient sowohl als Grundlage, um Belohnungsfunktionen abzuleiten, die für die optimale Kontrolle des Roboters über erweiterte Lernansätze verwendet werden, als auch um verifizierbare Abstraktionen kinematischer Robotermodelle zu generieren, die erleichterte Verhaltensvalidierung erlauben.
Partner
Cyber Physical Systems (CPS), DFKI Robotics Innovation Center (RIC), DFKI