Skip to main content Skip to main navigation

Publications

Displaying results 671 to 680 of 13250.
  1. Fisher Kernels for Relational Data

    In: Johannes Fürnkranz; Tobias Scheffer; Myra Spiliopoulou (Hrsg.). Machine Learning: ECML 2006, 17th European Conference on Machine Learning, Proceedings. European Conference on Machine Learning (ECML-2006), September 18-22, Berlin, Germany, Pages 114-125, Lecture Notes in Computer Science (LNCS), Vol. 4212, Springer, 2006.

  2. An inductive logic programming approach to statistical relational learning

    In: AI Communications (AIC), Vol. 19, No. 4, Pages 389-390, IOS Press, 2006.

  3. Luc De Raedt; Thomas G. Dietterich; Lise Getoor; Kristian Kersting; Stephen H. Muggleton (Hrsg.)

    07161 Abstracts Collection -- Probabilistic, Logical and Relational Learning - A Further Synthesis

    Probabilistic, Logical and Relational Learning - A Further Synthesis, April 14-20, Schloss Dagstuhl, Germany, Dagstuhl Seminar Proceedings, Vol. 07161, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

  4. Kristian Kersting; Christian Plagemann; Patrick Pfaff; Wolfram Burgard

    Most likely heteroscedastic Gaussian process regression

    In: Zoubin Ghahramani (Hrsg.). Machine Learning, Proceedings of the Twenty-Fourth International Conference. International Conference on Machine Learning (ICML-2007), Pages 393-400, ACM International Conference Proceeding Series, Vol. 227, ACM, 2007.

  5. Kristian Kersting; Christian Plagemann; Alexandru Cocora; Wolfram Burgard; Luc De Raedt

    Learning to transfer optimal navigation policies

    In: Advanced Robotics, Vol. 21, No. 13, Pages 1565-1582, Taylor & Francis Online, 2007.

  6. Kristian Kersting; Luc De Raedt; Bernd Gutmann; Andreas Karwath; Niels Landwehr

    Relational Sequence Learning

    In: Luc De Raedt; Paolo Frasconi; Kristian Kersting; Stephen H. Muggleton (Hrsg.). Probabilistic Inductive Logic Programming - Theory and Applications. Pages 28-55, Lecture Notes in Computer Science, Vol. 4911, Springer, 2008.

  7. Bernd Gutmann; Angelika Kimmig; Kristian Kersting; Luc De Raedt

    Parameter Learning in Probabilistic Databases: A Least Squares Approach

    In: Walter Daelemans; Bart Goethals; Katharina Morik (Hrsg.). Machine Learning and Knowledge Discovery in Databases, European Conference, Proceedings. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD-2008), September 15-19, Antwerp, Belgium, Pages 473-488, Lecture Notes in Computer Science, Vol. 5211, Springer, 2008.

  8. Christian Plagemann; Kristian Kersting; Wolfram Burgard

    Nonstationary Gaussian Process Regression Using Point Estimates of Local Smoothness

    In: Walter Daelemans; Bart Goethals; Katharina Morik (Hrsg.). Machine Learning and Knowledge Discovery in Databases, European Conference. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD-2008), September 15-19, Antwerp, Belgium, Pages 204-219, Lecture Notes in Computer Science, Vol. 5212, Springer, 2008.

  9. Zhao Xu; Volker Tresp; Achim Rettinger; Kristian Kersting

    Social Network Mining with Nonparametric Relational Models

    In: C. Lee Giles; Marc Smith; John Yen; Haizheng Zhang (Hrsg.). Advances in Social Network Mining and Analysis, Second International Workshop, SNAKDD 2008, Revised Selected Papers. International Workshop on Social Network Mining and Analysis (SNAKDD-2008), August 24-27, Las Vegas, NV, USA, Pages 77-96, Lecture Notes in Computer Science (LNCS), Vol. 5498, Springer, 2008.

  10. PerSim: Perception for Planetary Prospection and Internal Simulation

    In: 17th Symposium on Advanced Space Technologies in Robotics and Automation. ESA/Estec Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA-2023), October 18-20, Leiden, Netherlands, ASTRA Proceedings, Noordwijk The Netherlands, 2023.